#!/usr/bin/env python # -*- encoding: utf-8 -*- from functools import partial import pytest import torch import torch.multiprocessing as mp from colossalai.core import global_context as gpc from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.utils import free_port from colossalai.testing import rerun_if_address_is_in_use from checks_2d.check_layer_2d import (check_classifier_given_embed_weight, check_classifier_no_given_weight, check_embed, check_layernorm, check_linear, check_loss, check_patch_embed, check_vocab_parallel_classifier_given_embed_weight, check_vocab_parallel_classifier_no_given_weight, check_vocab_parallel_embed, check_vocab_parallel_loss) from checks_2d.check_operation_2d import check_AB, check_ABT, check_ATB CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=4, mode='2d')),) def check_operations(): check_AB() check_ABT() check_ATB() def check_layer(): check_linear() check_layernorm() check_embed() check_patch_embed() check_vocab_parallel_embed() check_classifier_no_given_weight() check_vocab_parallel_classifier_no_given_weight() check_classifier_given_embed_weight() check_vocab_parallel_classifier_given_embed_weight() check_loss() check_vocab_parallel_loss() def check_layer_and_operation(rank, world_size, port): disable_existing_loggers() launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cudnn.allow_tf32 = False torch.backends.cudnn.deterministic = True # check_operations() check_layer() gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist @rerun_if_address_is_in_use() def test_2d(): world_size = 4 run_func = partial(check_layer_and_operation, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_2d()