import math from typing import Optional import loralib as lora import torch import torch.nn as nn import torch.nn.functional as F class LoraLinear(lora.LoRALayer, nn.Module): """Replace in-place ops to out-of-place ops to fit gemini. Convert a torch.nn.Linear to LoraLinear. """ def __init__( self, weight: nn.Parameter, bias: Optional[nn.Parameter], r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0., fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out) merge_weights: bool = True, ): nn.Module.__init__(self) lora.LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=merge_weights) self.weight = weight self.bias = bias out_features, in_features = weight.shape self.in_features = in_features self.out_features = out_features self.fan_in_fan_out = fan_in_fan_out # Actual trainable parameters if r > 0: self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features))) self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r))) self.scaling = self.lora_alpha / self.r # Freezing the pre-trained weight matrix self.weight.requires_grad = False self.reset_parameters() if fan_in_fan_out: self.weight.data = self.weight.data.T def reset_parameters(self): if hasattr(self, 'lora_A'): # initialize A the same way as the default for nn.Linear and B to zero nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5)) nn.init.zeros_(self.lora_B) def train(self, mode: bool = True): def T(w): return w.T if self.fan_in_fan_out else w nn.Module.train(self, mode) if self.merge_weights and self.merged: # Make sure that the weights are not merged if self.r > 0: self.weight.data -= T(self.lora_B @ self.lora_A) * self.scaling self.merged = False def eval(self): def T(w): return w.T if self.fan_in_fan_out else w nn.Module.eval(self) if self.merge_weights and not self.merged: # Merge the weights and mark it if self.r > 0: self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling delattr(self, 'lora_A') delattr(self, 'lora_B') self.merged = True def forward(self, x: torch.Tensor): def T(w): return w.T if self.fan_in_fan_out else w if self.r > 0 and not self.merged: result = F.linear(x, T(self.weight), bias=self.bias) if self.r > 0: result = result + (self.lora_dropout(x) @ self.lora_A.t() @ self.lora_B.t()) * self.scaling return result else: return F.linear(x, T(self.weight), bias=self.bias) def lora_linear_wrapper(linear: nn.Linear, lora_rank: int) -> LoraLinear: assert lora_rank <= linear.in_features, f'LoRA rank ({lora_rank}) must be less than or equal to in features ({linear.in_features})' lora_linear = LoraLinear(linear.weight, linear.bias, r=lora_rank, merge_weights=False) return lora_linear def convert_to_lora_recursively(module: nn.Module, lora_rank: int) -> None: for name, child in module.named_children(): if isinstance(child, nn.Linear): setattr(module, name, lora_linear_wrapper(child, lora_rank)) else: convert_to_lora_recursively(child, lora_rank) class LoRAModule(nn.Module): """A LoRA module base class. All derived classes should call `convert_to_lora()` at the bottom of `__init__()`. This calss will convert all torch.nn.Linear layer to LoraLinear layer. Args: lora_rank (int, optional): LoRA rank. 0 means LoRA is not applied. Defaults to 0. lora_train_bias (str, optional): Whether LoRA train biases. 'none' means it doesn't train biases. 'all' means it trains all biases. 'lora_only' means it only trains biases of LoRA layers. Defaults to 'none'. """ def __init__(self, lora_rank: int = 0, lora_train_bias: str = 'none') -> None: super().__init__() self.lora_rank = lora_rank self.lora_train_bias = lora_train_bias def convert_to_lora(self) -> None: if self.lora_rank <= 0: return convert_to_lora_recursively(self, self.lora_rank) lora.mark_only_lora_as_trainable(self, self.lora_train_bias)