from copy import deepcopy from typing import Dict, List import torch from torch.fx.node import Node from colossalai.auto_parallel.tensor_shard.sharding_strategy import ( CommAction, CommType, OperationData, OperationDataType, ) from colossalai.device.device_mesh import DeviceMesh from colossalai.tensor.comm_spec import CommSpec from colossalai.tensor.shape_consistency import ShapeConsistencyManager shape_consistency_manager = ShapeConsistencyManager() def runtime_apply(node: Node, origin_dict: Dict, input_dict: Dict, node_index: int, user_node_index: int): """ This method will be invoked during runtime to do the shape consistency, which make sure the activations is converted into the user node expected form. """ origin_sharding_spec = origin_dict[node_index] target_sharding_spec = input_dict[node_index][user_node_index] return shape_consistency_manager.apply_for_autoparallel_runtime(node, origin_sharding_spec, target_sharding_spec) def runtime_comm_spec_apply(tensor: torch.Tensor, comm_actions_dict: Dict, node_index: int, op_data_name: str): """ This method will be invoked during runtime to apply the comm action following the instruction of comm spec. """ comm_action = comm_actions_dict[node_index][op_data_name] if isinstance(comm_action.comm_spec, CommSpec): rst = comm_action.comm_spec.covert_spec_to_action(tensor) else: origin_sharding_spec = comm_action.comm_spec['src_spec'] tgt_sharding_spec = comm_action.comm_spec['tgt_spec'] rst = shape_consistency_manager.apply_for_autoparallel_runtime(tensor, origin_sharding_spec, tgt_sharding_spec) return rst def _preprocess_graph(nodes: List[Node]): """ This method is used to extract all the placeholders with sharding information, and mapping the nodes into the index of the origin graph. """ # mapping the node into the origin graph index node_to_index_dict = {} index = 0 for node in nodes: if node.target == 'sharding_spec_convert_dict': input_dict_node = node continue if node.target == 'origin_node_sharding_spec_dict': origin_dict_node = node continue if node.target == 'comm_actions_dict': comm_actions_dict_node = node continue if not hasattr(node, 'best_strategy'): continue node_to_index_dict[node] = index index += 1 return input_dict_node, origin_dict_node, comm_actions_dict_node, node_to_index_dict def _shape_consistency_apply(gm: torch.fx.GraphModule): """ This pass is used to add the shape consistency node to the origin graph. """ mod_graph = gm.graph nodes = tuple(mod_graph.nodes) input_dict_node, origin_dict_node, _, node_to_index_dict = _preprocess_graph(nodes) for node in nodes: if not hasattr(node, 'best_strategy') or node.op == 'output': continue for user_node_index, user_node in enumerate(node.strategies_vector.successor_nodes): if node.sharding_spec.sharding_sequence_difference(node.target_sharding_specs[user_node_index]) == 0: continue with mod_graph.inserting_before(user_node): shape_consistency_node = mod_graph.create_node('call_function', runtime_apply, args=(node, origin_dict_node, input_dict_node, node_to_index_dict[node], user_node_index)) new_args = list(user_node.args) new_kwargs = dict(user_node.kwargs) # the origin node may be a positional argument or key word argument of user node if node in new_args: # substitute the origin node with shape_consistency_node origin_index_args = new_args.index(node) new_args[origin_index_args] = shape_consistency_node user_node.args = tuple(new_args) elif str(node) in new_kwargs: # substitute the origin node with shape_consistency_node new_kwargs[str(node)] = shape_consistency_node user_node.kwargs = new_kwargs return gm def _comm_spec_apply(gm: torch.fx.GraphModule): """ This pass is used to add the comm spec apply node to the origin graph. """ mod_graph = gm.graph nodes = tuple(mod_graph.nodes) _, _, comm_actions_dict_node, node_to_index_dict = _preprocess_graph(nodes) for node in nodes: if not hasattr(node, 'best_strategy') or node.op == 'output': continue comm_actions = node.best_strategy.communication_actions for op_data, comm_action in comm_actions.items(): if comm_action.comm_type == CommType.HOOK: continue if comm_action.comm_type == CommType.BEFORE: if op_data.type == OperationDataType.OUTPUT: comm_object = node elif comm_action.key_for_kwarg is not None: comm_object = node.kwargs[comm_action.key_for_kwarg] else: comm_object = node.args[comm_action.arg_index] with mod_graph.inserting_before(node): comm_spec_apply_node = mod_graph.create_node('call_function', runtime_comm_spec_apply, args=(comm_object, comm_actions_dict_node, node_to_index_dict[node], op_data.name)) # the origin node may be a positional argument or key word argument of user node if comm_action.key_for_kwarg is not None: # substitute the origin node with comm_spec_apply_node new_kwargs = dict(node.kwargs) new_kwargs[comm_action.key_for_kwarg] = comm_spec_apply_node node.kwargs = new_kwargs else: # substitute the origin node with comm_spec_apply_node new_args = list(node.args) new_args[comm_action.arg_index] = comm_spec_apply_node node.args = tuple(new_args) elif comm_action.comm_type == CommType.AFTER: with mod_graph.inserting_after(node): comm_spec_apply_node = mod_graph.create_node('call_function', runtime_comm_spec_apply, args=(node, comm_actions_dict_node, node_to_index_dict[node], op_data.name)) user_list = list(node.users.keys()) for user in user_list: if user == comm_spec_apply_node: continue new_args = list(user.args) new_kwargs = dict(user.kwargs) # the origin node may be a positional argument or key word argument of user node if node in new_args: # substitute the origin node with comm_spec_apply_node new_args[new_args.index(node)] = comm_spec_apply_node user.args = tuple(new_args) elif str(node) in new_kwargs: # substitute the origin node with comm_spec_apply_node new_kwargs[str(node)] = comm_spec_apply_node user.kwargs = new_kwargs return gm def runtime_apply_pass(gm: torch.fx.GraphModule): """ The method manages all the passes acting on the distributed training runtime. """ gm = _shape_consistency_apply(gm) gm = _comm_spec_apply(gm) return gm