import contextlib import functools from typing import Optional import torch from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.context.singleton_meta import SingletonMeta from colossalai.logging import get_dist_logger from colossalai.zero.shard_utils import BaseShardStrategy from colossalai.zero.sharded_model._utils import cast_tensor_to_fp16 from colossalai.zero.sharded_param import ShardedParamV2 from torch.distributed import ProcessGroup def _substitute_init_recursively(cls, func): for subcls in cls.__subclasses__(): _substitute_init_recursively(subcls, func) func(subcls) class InsertPostInitMethodToModuleSubClasses(object): def __init__(self): pass def __enter__(self): r""" Enter the context scope. """ def preprocess_after(f): @functools.wraps(f) def wrapper(module: torch.nn.Module, *args, **kwargs): f(module, *args, **kwargs) self._post_init_method(module) return wrapper def _enable_class(cls): cls._old_init = cls.__init__ cls.__init__ = preprocess_after(cls.__init__) # The function is called during init subclass. def _init_subclass(cls, **kwargs): cls.__init__ = preprocess_after(cls.__init__) # Replace .__init__() for all existing subclasses of torch.nn.Module # Excution self._post_init_method after the default init function. _substitute_init_recursively(torch.nn.modules.module.Module, _enable_class) # holding on to the current __init__subclass__ for exit torch.nn.modules.module.Module._old_init_subclass = (torch.nn.modules.module.Module.__init_subclass__) # Replace .__init__() for future subclasses of torch.nn.Module torch.nn.modules.module.Module.__init_subclass__ = classmethod(_init_subclass) self._pre_context_exec() def __exit__(self, exc_type, exc_value, traceback): def _disable_class(cls): cls.__init__ = cls._old_init # Replace .__init__() for all existing subclasses of torch.nn.Module _substitute_init_recursively(torch.nn.modules.module.Module, _disable_class) # Replace .__init__() for future subclasses of torch.nn.Module torch.nn.modules.module.Module.__init_subclass__ = (torch.nn.modules.module.Module._old_init_subclass) self._post_context_exec() # Now that we cleaned up the metaclass injection, raise the exception. if exc_type is not None: return False # To be implemented by inheriting classes def _post_init_method(self, module): pass def _pre_context_exec(self): pass def _post_context_exec(self): pass class ZeroContextConfig(object): """The configuration used to control zero context initialization. Args: replicated (bool, optional): Whether the param is replicated across data parallel group. Some parameters are not replicated, e.g. parameters in MOE experts. shard_param (bool, optional): Is param sharded after exiting the context. Defaults to False. rm_torch_payload_on_the_fly (bool, optional): If set to `True`, remove tensor payload on `param.data` after module init finished. This will reduce memory usage when initializing model. But it's not suitable for all models, especially when there are `weight init` operations in `__init__`. If set to `False`, remove tensor payload on param.data afther the context exist. This is used when you add some logic to operate tensors in __init__ of module. See torchvision resnet18. Defaults to False. """ def __init__(self, replicated: bool = True, shard_param: bool = False, rm_torch_payload_on_the_fly: bool = False): super().__init__() self.is_replicated: bool = replicated self.shard_param: bool = shard_param self.rm_torch_payload_on_the_fly: bool = rm_torch_payload_on_the_fly class ZeroInitContext(InsertPostInitMethodToModuleSubClasses): """A context to initialize model. 1. Convert the model to fp16. 2. The paramaters of the module are adapted to type ShardedParameter. 3. Shard the param and grad according to flags. Args: target_device (torch.device): The device where param data after exiting the context. shard_strategy (BaseShardStrategy): Shard strategy instance. shard_param (bool, optional): Is param sharded after exiting the context. Defaults to False. rm_torch_payload_on_the_fly (bool, optional): If set to `True`, remove tensor payload on `param.data` after module init finished. This will reduce memory usage when initializing model. But it's not suitable for all models, especially when there are `weight init` operations in `__init__`. If set to `False`, remove tensor payload on param.data afther the context exist. This is used when you add some logic to operate tensors in __init__ of module. See torchvision resnet18. Defaults to False. model_numel_tensor (torch.Tensor, optional): A tensor which will store the number of elements of model. Defaults to torch.zeros(1, dtype=torch.int). dp_process_group (Optional[ProcessGroup], optional): Data parallel process group. Defaults to None. """ def __init__(self, target_device: torch.device, shard_strategy: BaseShardStrategy, shard_param: bool = False, rm_torch_payload_on_the_fly: bool = False, model_numel_tensor: torch.Tensor = torch.zeros(1, dtype=torch.long), dp_process_group: Optional[ProcessGroup] = None): super().__init__() self.target_device = target_device self.shard_strategy = shard_strategy self.initialized_param_list = [] self.model_numel_tensor = model_numel_tensor self.dp_process_group = dp_process_group or gpc.get_group(ParallelMode.DATA) self.config = ZeroContextConfig(replicated=True, shard_param=shard_param, rm_torch_payload_on_the_fly=rm_torch_payload_on_the_fly) ZeroContextMgr().current_context = self @property def is_replicated(self): return self.config.is_replicated @property def shard_param(self): return self.config.shard_param @property def rm_torch_payload_on_the_fly(self): return self.config.rm_torch_payload_on_the_fly def _pre_context_exec(self): """ The Callback function when entering the context """ self.logger = get_dist_logger("ZeroInitContext") def _post_context_exec(self): """The callback function when exiting context. """ if not self.rm_torch_payload_on_the_fly: for param in self.initialized_param_list: assert hasattr(param, 'colo_attr') param.colo_attr.remove_torch_payload() del self.initialized_param_list def _post_init_method(self, module: torch.nn.Module): """ The function to call at the end of the constructor of each module. NOTE() The module may be passed to this function multiple times. """ def half_fn(t: torch.Tensor): return t.half() if t.is_floating_point() else t for param in module.parameters(recurse=False): # avoid adapting a param to ShardedParam twice if hasattr(param, 'colo_attr'): continue self.model_numel_tensor += param.numel() # mark whether the param is replicated param.is_replicated = self.is_replicated # convert parameters to half param_half = half_fn(param) param.data = param_half if param.grad is not None: grad_half = half_fn(param.grad) param.grad.data = grad_half # move torch parameters to the target device target_device = self.target_device param.data = param.data.to(target_device) if param.grad is not None: param.grad = param.grad.to(target_device) param.colo_attr = ShardedParamV2(param, rm_torch_payload=self.rm_torch_payload_on_the_fly) if self.shard_param: self.shard_strategy.shard([param.colo_attr.sharded_data_tensor], self.dp_process_group) self.initialized_param_list.append(param) # We must cast buffers # If we use BN, buffers may be on CPU and Float # We must cast them for buffer in module.buffers(recurse=False): buffer.data = buffer.data.to(device=torch.cuda.current_device()) buffer.data = cast_tensor_to_fp16(buffer.data) class ZeroContextMgr(metaclass=SingletonMeta): current_context: Optional[ZeroInitContext] = None @contextlib.contextmanager def hijack_context_config(self, **kwargs): if self.current_context is None: yield else: old_config = self.current_context.config self.current_context.config = ZeroContextConfig(**kwargs) yield self.current_context.config = old_config def no_shard_zero_context(is_replicated: bool = True): return ZeroContextMgr().hijack_context_config(replicated=is_replicated, shard_param=False, rm_torch_payload_on_the_fly=False) def no_shard_zero_decrator(is_replicated: bool = True): def _wrapper(init_func): def _no_shard(*args, **kwargs): with no_shard_zero_context(is_replicated): init_func(*args, **kwargs) return _no_shard return _wrapper