import functools from abc import ABC, abstractmethod from time import time from typing import Dict, List, Optional, Tuple, Type import torch from colossalai.gemini.chunk import Chunk, ChunkManager from colossalai.gemini.memory_tracer import ChunkMemStatsCollector from colossalai.utils import get_current_device from colossalai.utils.memory import colo_device_memory_capacity class PlacementPolicy(ABC): need_mem_stats: bool = False def __init__(self, chunk_manager: ChunkManager, mem_stats_collector: Optional[ChunkMemStatsCollector] = None) -> None: self.chunk_manager = chunk_manager self.mem_stats_collector: Optional[ChunkMemStatsCollector] = mem_stats_collector @abstractmethod def evict_tensors(self, can_evict_chunks: List[Chunk], **kwargs) -> Tuple[int, float]: raise NotImplementedError @staticmethod def get_default_device() -> torch.device: return torch.device('cpu') class CPUPlacementPolicy(PlacementPolicy): def __init__(self, chunk_manager: ChunkManager, mem_stats_collector: Optional[ChunkMemStatsCollector] = None) -> None: super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector) def evict_tensors(self, can_evict_chunks: List[Chunk], **kwargs) -> Tuple[int, float]: volume = 0 start = time() for chunk in can_evict_chunks: self.chunk_manager.release_chunk(chunk) self.chunk_manager.move_chunk(chunk, torch.device('cpu')) volume += chunk.chunk_mem return volume, time() - start class CUDAPlacementPolicy(PlacementPolicy): def __init__(self, chunk_manager: ChunkManager, mem_stats_collector: Optional[ChunkMemStatsCollector] = None) -> None: assert torch.cuda.is_available(), 'Cannot use CUDATensorPlacementPolicy when CUDA is not available' super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector) def evict_tensors(self, can_evict_chunks: List[Chunk], **kwargs) -> Tuple[int, float]: return 0, 0 @staticmethod def get_default_device() -> torch.device: return get_current_device() class AutoPlacementPolicy(PlacementPolicy): need_mem_stats: bool = True # model data will use 1-_warmup_non_model_data_ratio CUDA memory in warmup phase # you can set them by AutoPlacementPolicy.set_warmup_non_model_data_ratio() # and AutoPlacementPolicy.set_steady_cuda_cap_ratio() _warmup_non_model_data_ratio: float = 0.8 _steady_cuda_cap_ratio: float = 0.9 def __init__(self, chunk_manager: ChunkManager, mem_stats_collector: Optional[ChunkMemStatsCollector] = None) -> None: super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector) def evict_tensors(self, can_evict_chunks: List[Chunk], cuda_demand: int = 0, warmup: bool = True, compute_list: Optional[List[Tuple[Chunk, ...]]] = None, compute_idx: int = 0, **kwargs) -> Tuple[int, float]: """ Evict tensors from CUDA device. Args: can_evict_chunks (List[StatefulTensor]): the list of tensors that can be evicted. cuda_demand (int, optional): the volume of data needed on cuda device. Defaults to 0. warmup (bool, optional): a flag indicates whether in the phase of warmup. Defaults to True. compute_list (List[StatefulTensor], optional): TODO. Defaults to []. compute_idx (int, optional): the idx of computing device. Defaults to 0. Raises: RuntimeError: Returns: int: the volume of memory that is evicted """ start = time() cuda_capacity = colo_device_memory_capacity(get_current_device()) used_cuda_model_data = self.chunk_manager.total_mem['cuda'] if warmup: # We designate a part of CUDA memory for model data in warmup iterations. max_cuda_non_model_data_per_period = cuda_capacity * AutoPlacementPolicy._warmup_non_model_data_ratio else: # max non-model-data cuda memory consumption of this sampling moment and the next sampling moment. max_cuda_non_model_data_per_period = self.mem_stats_collector.next_period_non_model_data_usage('cuda') cuda_capacity *= AutoPlacementPolicy._steady_cuda_cap_ratio total_cuda_model_data = cuda_capacity - max_cuda_non_model_data_per_period avail_cuda_model_data = total_cuda_model_data - used_cuda_model_data freed_cuda_model_data = 0 if avail_cuda_model_data < cuda_demand: # Move cuda_demand - avail_cuda_model_data volume of tensors # to_free_cuda_model_data = cuda_demand - avail_cuda_model_data to_free_cuda_model_data = cuda_demand - avail_cuda_model_data to_free_chunks = can_evict_chunks if not warmup: to_free_chunks = self._sort_can_evict_chunks(tuple(to_free_chunks), compute_idx, tuple(compute_list)) # print(self._sort_can_evict_chunks.cache_info()) for chunk in to_free_chunks: if freed_cuda_model_data >= to_free_cuda_model_data: break self.chunk_manager.release_chunk(chunk) self.chunk_manager.move_chunk(chunk, torch.device('cpu')) freed_cuda_model_data += chunk.chunk_mem if freed_cuda_model_data < to_free_cuda_model_data: raise RuntimeError(f"Adjust layout failed! No enough CUDA memory! " f"Need {to_free_cuda_model_data}, freed {freed_cuda_model_data}") return freed_cuda_model_data, time() - start @staticmethod @functools.lru_cache(maxsize=None) def _sort_can_evict_chunks(can_evict_chunks: tuple, compute_idx: int, compute_list: tuple) -> list: next_compute_idx = {chunk: len(compute_list) for chunk in can_evict_chunks} for i in range(len(compute_list) - 1, compute_idx, -1): for chunk in compute_list[i]: if chunk in next_compute_idx: next_compute_idx[chunk] = i next_compute_idx = sorted(next_compute_idx.items(), key=lambda pair: pair[1], reverse=True) return [t for (t, idx) in next_compute_idx] @staticmethod def set_warmup_non_model_data_ratio(ratio: float) -> None: ratio = float(ratio) assert 0.0 < ratio < 1.0 AutoPlacementPolicy._warmup_non_model_data_ratio = ratio @staticmethod def set_steady_cuda_cap_ratio(ratio: float) -> None: ratio = float(ratio) assert 0.0 < ratio < 1.0 AutoPlacementPolicy._steady_cuda_cap_ratio = ratio class ConstPlacementPolicy(PlacementPolicy): need_mem_stats: bool = False _accessed_memory_boundary = 512 * 1024**2 def __init__(self, chunk_manager: ChunkManager, mem_stats_collector: Optional[ChunkMemStatsCollector] = None) -> None: super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector) def evict_tensors(self, can_evict_chunks: List[Chunk], cuda_demand: int = 0, warmup: bool = True, compute_list: Optional[List[Tuple[Chunk, ...]]] = None, compute_idx: int = 0, **kwargs) -> Tuple[int, float]: """ See the docstrings in the class `AutoPlacementPolicy`. """ start = time() used_accessed_memory = self.chunk_manager.accessed_mem avail_accessed_memory = ConstPlacementPolicy._accessed_memory_boundary - used_accessed_memory freed_accessed_memory = 0 if avail_accessed_memory < cuda_demand: to_free_memory = cuda_demand - avail_accessed_memory to_free_chunks = can_evict_chunks if not warmup: # sort all chunks to_free_chunks = self._sort_can_evict_chunks(tuple(to_free_chunks), compute_idx, tuple(compute_list)) for chunk in to_free_chunks: if freed_accessed_memory >= to_free_memory: break self.chunk_manager.release_chunk(chunk) self.chunk_manager.move_chunk(chunk, torch.device('cpu')) freed_accessed_memory += chunk.chunk_mem if freed_accessed_memory < to_free_memory: raise RuntimeError(f"Adjust layout failed! No enough CUDA memory! " f"Need {to_free_memory}, freed {freed_accessed_memory}") return freed_accessed_memory, time() - start @staticmethod @functools.lru_cache(maxsize=None) def _sort_can_evict_chunks(can_evict_chunks: tuple, compute_idx: int, compute_list: tuple) -> list: next_compute_idx = {chunk: len(compute_list) for chunk in can_evict_chunks} for i in range(len(compute_list) - 1, compute_idx, -1): for chunk in compute_list[i]: if chunk in next_compute_idx: next_compute_idx[chunk] = i next_compute_idx = sorted(next_compute_idx.items(), key=lambda pair: pair[1], reverse=True) return [t for (t, idx) in next_compute_idx] @staticmethod def set_const_memory_boundary(cuda_memory_mb: int) -> None: boundary = int(cuda_memory_mb * 1024**2) assert boundary > 0 ConstPlacementPolicy._accessed_memory_boundary = boundary class PlacementPolicyFactory: policies: Dict[str, Type[PlacementPolicy]] = { 'cpu': CPUPlacementPolicy, 'cuda': CUDAPlacementPolicy, 'auto': AutoPlacementPolicy, 'const': ConstPlacementPolicy } @staticmethod def create(policy_name: str) -> Type[PlacementPolicy]: if policy_name not in PlacementPolicyFactory.policies: raise TypeError(f"Unknown tensor placement policy {policy_name}") return PlacementPolicyFactory.policies[policy_name] @staticmethod def get_policy_names(): return tuple(PlacementPolicyFactory.policies.keys()) @staticmethod def get_default_device(policy_name: str) -> torch.device: policy_cls = PlacementPolicyFactory.create(policy_name) return policy_cls.get_default_device()