from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing import assert_close import colossalai from colossalai.tensor import ProcessGroup from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port, get_current_device from colossalai.zero import ColoInitContext, LowLevelZeroOptimizer from tests.test_tensor.common_utils import set_seed, split_param_col_tp1d, split_param_row_tp1d, tensor_shard_equal def strict_shard_equal(tensor, shard, tp_pg, rtol=1e-3, atol=1e-4): return tensor_shard_equal(tensor, shard, tp_pg.tp_local_rank(), tp_pg.tp_world_size(), rtol, atol) class MlpModel(nn.Module): def __init__(self): super(MlpModel, self).__init__() self.linear1 = nn.Linear(32, 128) self.act = nn.GELU() self.linear2 = nn.Linear(128, 32) def forward(self, x): y = self.linear1(x) y = self.act(y) y = self.linear2(y) return x + y @parameterize("overlap_flag", [False, True]) @parameterize("partition_flag", [False, True]) def exam_zero_with_tp(overlap_flag, partition_flag): set_seed(233010) tp_pg = ProcessGroup(tp_degree=2) with ColoInitContext(device=get_current_device(), default_pg=tp_pg): hybrid_model = MlpModel() torch_model = MlpModel().cuda() for pt, ph in zip(torch_model.parameters(), hybrid_model.parameters()): pt.data.copy_(ph.data) for name, param in hybrid_model.named_parameters(): if 'linear1' in name: split_param_row_tp1d(param, tp_pg) param.compute_spec.set_output_replicate(False) if 'linear2.weight' in name: split_param_col_tp1d(param, tp_pg) torch_model = DDP(torch_model, device_ids=[tp_pg.rank()], process_group=tp_pg.dp_process_group()) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-2) # set to 1e-2 for torch-1.11 hybrid_optim = torch.optim.Adam(hybrid_model.parameters(), lr=1e-2) hybrid_optim = LowLevelZeroOptimizer(hybrid_optim, initial_scale=2, clip_grad_norm=1.0, overlap_communication=overlap_flag, partition_grad=partition_flag) dp_local_rank = tp_pg.dp_local_rank() set_seed(255 + dp_local_rank) data = torch.randn(8, 32, device=get_current_device()) torch_loss = torch_model(data).sum() hybrid_loss = hybrid_model(data).sum() assert_close(torch_loss, hybrid_loss) torch_loss.backward() torch.nn.utils.clip_grad_norm_(torch_model.parameters(), 1.0) hybrid_optim.backward(hybrid_loss) torch_optim.step() hybrid_optim.step() for (name, pt), ph in zip(torch_model.named_parameters(), hybrid_model.parameters()): assert strict_shard_equal(pt.data, ph.data, tp_pg) def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host='localhost') exam_zero_with_tp() @pytest.mark.dist @rerun_if_address_is_in_use() def test_zero_with_tp(): world_size = 4 run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_with_tp()