from functools import partial import pytest import torch import torch.multiprocessing as mp import colossalai from colossalai.nn.optimizer import ColossalaiOptimizer from colossalai.tensor import ColoTensor, ProcessGroup from colossalai.tensor.colo_parameter import ColoParameter from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.zero import ColoInitContext from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import ( check_equal, set_seed, split_param_col_tp1d, split_param_row_tp1d, tensor_shard_equal, ) def run_1d_hybrid_tp(model_name): # A simple net with two stacked nn.Linear get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() rank = torch.distributed.get_rank() world_size = torch.distributed.get_world_size() set_seed(1) with ColoInitContext(device=get_current_device()): model = model_builder(checkpoint=True) if rank == 0: model_torch = model_builder(checkpoint=True) model_torch = model_torch.cuda() optimizer_torch = ColossalaiOptimizer(torch.optim.SGD(model_torch.parameters(), lr=0.1)) # Make two models have the same init params for p1, p2 in zip(model.parameters(), model_torch.parameters()): p2.data.copy_(p1.data) else: model_torch = None optimizer_torch = None pg = ProcessGroup(tp_degree=world_size) if 'bert' == model_name: for name, p in model.named_parameters(): if not isinstance(p, ColoTensor): continue # num_class = type_vocab_size = 2 | (8, 2) if 'classifier' in name and 'weight' in name: split_param_col_tp1d(p, pg) # num_class = vocab_size = 30524 | (30524, 8) elif 'word_embeddings' in name and 'weight' in name: split_param_row_tp1d(p, pg) # num_class = seq_len = 512 | (512, 8) elif 'position_embeddings' in name and 'weight' in name: split_param_row_tp1d(p, pg) # num_class = type_vocab_size = 2 | (2, 8) elif 'token_type_embeddings' in name and 'weight' in name: split_param_col_tp1d(p, pg) elif "simple_net" == model_name: # A naive way to set spec for all weights in Linear for name, p in model.named_parameters(): if not isinstance(p, ColoTensor): continue if 'embed' in name and 'weight' in name: split_param_col_tp1d(p, pg) if 'proj1' in name and ('weight' in name or 'bias' in name): split_param_row_tp1d(p, pg) if 'proj2' in name and 'weight' in name: split_param_col_tp1d(p, pg) if 'classifier' in name and ('weight' in name or 'bias' in name): split_param_row_tp1d(p, pg) model = model.cuda() model.eval() if rank == 0: model_torch.eval() colo_optimizer = ColossalaiOptimizer(torch.optim.SGD(model.parameters(), lr=0.1)) for i, (data, label) in enumerate(train_dataloader): # Zero grad colo_optimizer.zero_grad() if rank == 0: optimizer_torch.zero_grad() torch.distributed.barrier() data = data.to(get_current_device()) label = label.to(get_current_device()) torch.distributed.broadcast(data, 0, group=pg.tp_process_group()) torch.distributed.broadcast(label, 0, group=pg.tp_process_group()) # Bcast rank0 data to all processes if criterion: output = model(data) loss = criterion(output, label) else: output = model(data, label) loss = output # Test output if rank == 0: if criterion: output_torch = model_torch(data) loss_torch = criterion(output_torch, label) else: output_torch = model_torch(data, label) loss_torch = output_torch assert torch.allclose(loss, loss_torch, rtol=1e-2), f"model_name {model_name} failed" torch.distributed.barrier() loss.backward() colo_optimizer.step() if rank == 0: loss_torch.backward() optimizer_torch.step() with torch.no_grad(): # check param for p, torch_p in zip(model.parameters(), model_torch.parameters()): assert tensor_shard_equal(torch_p, p, pg.tp_local_rank(), pg.tp_world_size()) torch.distributed.barrier() if i > 5: break # Test the overrided parameters() and named_parameters() member functions def test_model_parameters(): colossalai.launch(config={}, rank=0, world_size=1, host='localhost', port=free_port(), backend='nccl') # build a module with 2 Linear, 4 parameters in total. class Net(torch.nn.Module): def __init__(self): super().__init__() self.fcs = torch.nn.Sequential(torch.nn.Linear(2, 3), torch.nn.Linear(3, 2)) self.extra_param = torch.nn.Parameter(torch.randn(2)) with ColoInitContext(device=get_current_device()): model = Net() param_cnt = 0 for name, p in model.named_parameters(): param_cnt += 1 assert param_cnt == 5 for name, colo_p in model.named_parameters(): assert colo_p.is_model_data() param_cnt = 0 for name, p in model.named_parameters(recurse=False): param_cnt += 1 assert param_cnt == 1 param_cnt = 0 for p in model.fcs[0].parameters(recurse=False): param_cnt += 1 assert param_cnt == 2 def test_colo_optimizer(): get_components_func = non_distributed_component_funcs.get_callable('simple_net') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() set_seed(1) with ColoInitContext(device=get_current_device()): model = model_builder(checkpoint=True) colo_optimizer = ColossalaiOptimizer(torch.optim.SGD(model.parameters(), lr=0.1)) for i, (data, label) in enumerate(train_dataloader): colo_optimizer.zero_grad() data = data.to(get_current_device()) label = label.to(get_current_device()) # Bcast rank0 data to all processes if criterion: output = model(data) loss = criterion(output, label) else: output = model(data, label) loss = output loss.backward() colo_optimizer.step() if i > 5: break def run_1d_row_tp(model_name: str): # A simple net with two stacked nn.Linear get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() rank = torch.distributed.get_rank() set_seed(1) with ColoInitContext(device=get_current_device()): model = model_builder(checkpoint=True) world_size = torch.distributed.get_world_size() pg = ProcessGroup(tp_degree=world_size) set_seed(1) if rank == 0: model_torch = model_builder(checkpoint=True) model_torch = model_torch.cuda() # A naive way to set spec for all weights in Linear for mo_name, module in model.named_modules(): # print(mo_name) for pa_name, param in module.named_parameters(recurse=False): # print('\t', pa_name, param.shape) if not isinstance(param, ColoTensor): continue if 'weight' in pa_name: if 'embed' in mo_name and 'token' not in mo_name and 'LayerNorm' not in mo_name: split_param_row_tp1d(param, pg) elif 'LayerNorm' not in mo_name and 'ln' not in mo_name: split_param_col_tp1d(param, pg) model = model.cuda() for i, (data, label) in enumerate(train_dataloader): data = data.to(get_current_device()) label = label.to(get_current_device()) torch.distributed.broadcast(data, 0, group=pg.tp_process_group()) torch.distributed.broadcast(label, 0, group=pg.tp_process_group()) # Bcast rank0 data to all processes if criterion: output = model(data) loss = criterion(output, label) else: output = model(data, label) loss = output # For reference if rank == 0: if criterion: output_torch = model_torch(data) loss_torch = criterion(output_torch, label) else: output_torch = model_torch(data, label) loss_torch = output_torch assert torch.allclose(loss, loss_torch, rtol=1e-2) torch.distributed.barrier() loss.backward() if rank == 0: loss_torch.backward() torch.distributed.barrier() if i > 5: break def _run_pretrain_load(): from transformers import BertForMaskedLM set_seed(1) model_pretrained = BertForMaskedLM.from_pretrained('bert-base-uncased') with ColoInitContext(device=get_current_device()): model = BertForMaskedLM.from_pretrained('bert-base-uncased') model_pretrained = model_pretrained.cuda() model = model.cuda() dict_pretrained = {} dict_col = {} c_ref = 0 for name, param in model_pretrained.named_parameters(): dict_pretrained[name] = param c_ref += 1 c1 = 0 c2 = 0 for name, param in model.named_parameters(): if isinstance(param, ColoParameter): c1 += 1 else: c2 += 1 dict_col[name] = param assert c_ref == c1 assert c2 == 0 if model_pretrained.cls.predictions.decoder.bias is model_pretrained.cls.predictions.bias: assert model.cls.predictions.decoder.bias is model.cls.predictions.bias for name, param in dict_pretrained.items(): check_equal(param, dict_col[name]) def run_model_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') # Comment below test for speed consideration # for name in ['bert', 'simple_net']: # run_1d_row_tp(name) for name in ['bert', 'simple_net']: run_1d_hybrid_tp(name) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_model(world_size): run_func = partial(run_model_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) def run_pretrain_load_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') _run_pretrain_load() # The test case has to download huggingface pretrained models from the internet # So we manually trigger the test. @pytest.mark.skip @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_pretrain_load(world_size): run_func = partial(run_pretrain_load_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': # test_model_parameters() # test_colo_optgimizer() test_model(4) # test_pretrain_load(4)