# Adapted from https://github.com/ruixiangcui/AGIEval/blob/main/src/dataset_loader.py. import ast import glob import os from copy import deepcopy from typing import Dict, List import pandas as pd from colossal_eval.utils import get_json_list from colossalai.logging import DistributedLogger from .base import BaseDataset # define the datasets english_qa_datasets = [ "lsat-ar", "lsat-lr", "lsat-rc", "logiqa-en", "sat-math", "sat-en", "aqua-rat", "sat-en-without-passage", "gaokao-english", ] chinese_qa_datasets = [ "logiqa-zh", "jec-qa-kd", "jec-qa-ca", "gaokao-chinese", "gaokao-geography", "gaokao-history", "gaokao-biology", "gaokao-chemistry", "gaokao-physics", "gaokao-mathqa", ] english_cloze_datasets = ["math"] chinese_cloze_datasets = ["gaokao-mathcloze"] multi_choice_datasets = ["jec-qa-kd", "jec-qa-ca", "gaokao-physics", "gaokao-mathqa"] math_output_datasets = {"gaokao-mathcloze", "math"} default_inference_kwargs = { "calculate_loss": True, "all_classes": None, "language": "Chinese", "pretrain": False, "max_new_tokens": 32, } def get_prompt(line: Dict, dataset_name: str, logger: DistributedLogger) -> Dict: """Modified from https://github.com/microsoft/AGIEval/blob/main/src/dataset_loader.py#L190""" try: all_classes = None passage = line["passage"] if line["passage"] is not None else "" if dataset_name in english_qa_datasets: option_string = "ABCDEFG" count = len(line["options"]) input = ( "Question: " + line["question"] + " " + "Choose from the following options: " + " ".join(line["options"]) + "\n" + "Answer: " ) all_classes = list(option_string[0:count]) elif dataset_name in chinese_qa_datasets: option_string = "ABCDEFG" count = len(line["options"]) input = ( "问题:" + line["question"] + " " + "从以下选项中选择:" + " ".join(line["options"]) + "\n" + "答案:" ) all_classes = list(option_string[0:count]) elif dataset_name in english_cloze_datasets: input = "Question: " + line["question"] + "\n" + "Answer: " elif dataset_name in chinese_cloze_datasets: input = "问题:" + line["question"] + "\n" + "答案:" return { "instruction": input if not passage else passage + "\n\n" + input, "target": line["label"] if line["label"] else line["answer"], }, all_classes except NameError: logger.info("Dataset not defined.") # process few-shot raw_prompts def combine_prompt(prompt_path, dataset_name, load_explanation=True, chat_mode=False): demostrations = [] demostration_en = "Here are the answers for the problems in the exam." demostration_zh = "以下是考试中各个问题的答案。" if dataset_name in english_qa_datasets or dataset_name in english_cloze_datasets: demostrations.append(demostration_en) elif dataset_name in chinese_qa_datasets or dataset_name in chinese_cloze_datasets: demostrations.append(demostration_zh) skip_passage = False if dataset_name == "sat-en-without-passage": skip_passage = True dataset_name = "sat-en" # read the prompts by context and explanation context_row = [0, 1, 3, 5, 7, 9] explanation_row = [0, 2, 4, 6, 8, 10] raw_prompts_context = pd.read_csv( prompt_path, header=0, skiprows=lambda x: x not in context_row, keep_default_na=False ) raw_prompts_explanation = pd.read_csv( prompt_path, header=0, skiprows=lambda x: x not in explanation_row, keep_default_na=False ).replace(r"\n\n", "\n", regex=True) contexts = [] for line in list(raw_prompts_context[dataset_name]): if line: # print(line) contexts.append(ast.literal_eval(line)) explanations = [exp for exp in raw_prompts_explanation[dataset_name] if exp] for idx, (con, exp) in enumerate(zip(contexts, explanations)): passage = con["passage"] if con["passage"] is not None and not skip_passage else "" question = con["question"] options = con["options"] if con["options"] is not None else "" label = con["label"] if con["label"] is not None else "" answer = con["answer"] if "answer" in con and con["answer"] is not None else "" if dataset_name in english_qa_datasets: question_input = ( "Question: " + passage + " " + question + "\n" + "Choose from the following options: " + " ".join(options) + "\n" + "Answer: {}".format(label) ) elif dataset_name in chinese_qa_datasets: question_input = ( "问题:" + passage + " " + question + "\n" + "从以下选项中选择:" + " ".join(options) + "\n" + "答案:{}".format(label) ) elif dataset_name in english_cloze_datasets: question_input = "Question: ".format(idx + 1) + question + "\n" + "Answer: {}".format(answer) elif dataset_name in chinese_cloze_datasets: question_input = "问题:" + question + "\n" + "答案:{}".format(answer) else: raise ValueError(f"During loading few-sot examples, found unknown dataset: {dataset_name}") if chat_mode: demostrations.append((question_input,)) else: demostrations.append(question_input) return demostrations class AGIEvalDataset(BaseDataset): """ Dataset wrapper for AGIEval dataset. Data source: https://github.com/microsoft/AGIEval This dataset class will convert the original dataset into the inference dataset. A few dirty data needed to be manually corrected in the origin dataset: Issue link: https://github.com/microsoft/AGIEval/issues/16 1. Invalid options in line 190 in gaokao-chemistry.jsonl. 2. Option D (They may increase in value as those same resources become rare on Earth.) missing in line 17 in sat-en-without-passage.jsonl. 3. Option D (They may increase in value as those same resources become rare on Earth.) missing in line 17 in sat-en.jsonl. 4. Option D (No, because the data do not indicate whether the honeybees had been infected with mites.) missing in line 57 in sat-en-without-passage.jsonl. 5. Option D (No, because the data do not indicate whether the honeybees had been infected with mites.) missing in line 57 in sat-en.jsonl. 6. Option D (Published theories of scientists who developed earlier models of the Venus flytrap) missing in line 98 in sat-en-without-passage.jsonl. 7. Option D (Published theories of scientists who developed earlier models of the Venus flytrap) missing in line 98 in sat-en.jsonl. 8. Label is empty in line 212 in jec-qa-kd.jsonl. Content is also dirty. 9. Actually, gaokao-mathqa.jsonl is also a multi-choice dataset. See line 149 286 287. """ @staticmethod def load( path: str, logger: DistributedLogger, few_shot: bool, forward_only: bool, load_train: bool, load_reference: bool ) -> List[Dict]: dataset = {"test": {}} files = glob.glob(os.path.join(path, "*.jsonl")) files.sort() if few_shot: prompt_path = os.path.join(path, "few_shot_prompts.csv") for file in files: dataset_name = os.path.basename(file)[0 : -len(".jsonl")] few_shot_data = None if few_shot: # process demo once if it is few-shot-CoT few_shot_data = combine_prompt(prompt_path, dataset_name, load_explanation=False, chat_mode=False) dataset["test"][dataset_name] = {"data": []} file_dir = os.path.join(path, file) loaded_jsonl = get_json_list(file_dir) # It's been tested that each data sample in one subcategory have same inference arguments. _, all_classes = get_prompt(loaded_jsonl[0], dataset_name, logger) inference_kwargs = deepcopy(default_inference_kwargs) if all_classes is not None and dataset_name not in multi_choice_datasets: inference_kwargs["all_classes"] = all_classes if dataset_name in english_qa_datasets: inference_kwargs["language"] = "English" if dataset_name in chinese_qa_datasets: inference_kwargs["language"] = "Chinese" inference_kwargs["few_shot_data"] = few_shot_data dataset["test"][dataset_name]["inference_kwargs"] = inference_kwargs for line in loaded_jsonl: info, all_classes = get_prompt(line, dataset_name, logger) # Convert multi-choice answers to a single string. # We will convert it back when evaluating. # We do this because if target is a list, it should be only used for multiple target answers. if dataset_name in multi_choice_datasets: if isinstance(info["target"], str) and len(info["target"]) > 1: # "gaokao-mathqa" actually contain multi-choice questions. # This if clause is specially used for it. info["target"] = "".join(info["target"].split()) else: info["target"] = "".join(info["target"]) if isinstance(info["target"], list) and len(info["target"]) == 1: info["target"] = info["target"][0] data_sample = { "dataset": "agieval", "split": "test", "category": dataset_name, "instruction": info["instruction"], "input": "", "output": "", "target": info["target"], } dataset["test"][dataset_name]["data"].append(data_sample) return dataset