set_n_least_used_CUDA_VISIBLE_DEVICES() { local n=${1:-"9999"} echo "GPU Memory Usage:" local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv | tail -n +2 | nl -v 0 | tee /dev/tty | sort -g -k 2 | awk '{print $1}' | head -n $n) export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g') echo "Now CUDA_VISIBLE_DEVICES is set to:" echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" } set_n_least_used_CUDA_VISIBLE_DEVICES 4 PROJECT_NAME="sft" PARENT_CONFIG_FILE="./benchmark_config" # Path to a folder to save training config logs PRETRAINED_MODEL_PATH="" # huggingface or local model path PRETRAINED_TOKENIZER_PATH="" # huggingface or local tokenizer path BENCHMARK_DATA_DIR="./temp/sft" # Path to benchmark data DATASET_SIZE=640 TIMESTAMP=$(date +%Y-%m-%d-%H-%M-%S) FULL_PROJECT_NAME="${PROJECT_NAME}-${TIMESTAMP}" CONFIG_FILE="${PARENT_CONFIG_FILE}-${FULL_PROJECT_NAME}.json" declare -a dataset=( $BENCHMARK_DATA_DIR/arrow/part-0 ) # Generate dummy test data python prepare_dummy_test_dataset.py --data_dir $BENCHMARK_DATA_DIR --dataset_size $DATASET_SIZE --max_length 2048 --data_type sft # the real batch size for gradient descent is number_of_node_in_hostfile * nproc_per_node * train_batch_size colossalai run --nproc_per_node 1 --master_port 31312 ../examples/training_scripts/train_sft.py \ --pretrain $PRETRAINED_MODEL_PATH \ --tokenizer_dir $PRETRAINED_TOKENIZER_PATH \ --dataset ${dataset[@]} \ --plugin zero2 \ --batch_size 8 \ --max_epochs 1 \ --accumulation_steps 1 \ --lr 5e-5 \ --lora_rank 32 \ --max_len 2048 \ --grad_checkpoint \ --use_flash_attn