import random

import numpy as np
import pytest
import torch
import torch.distributed as dist
from torch.multiprocessing import Manager
from transformers import AutoTokenizer, GenerationConfig, LlamaConfig, LlamaForCausalLM

import colossalai
from colossalai.inference.config import _DEFAULT_PROMPT_TEMPLATES, InferenceConfig
from colossalai.inference.core.engine import InferenceEngine
from colossalai.inference.modeling.models.glide_llama import GlideLlamaConfig, GlideLlamaForCausalLM
from colossalai.inference.modeling.policy import NoPaddingLlamaModelInferPolicy
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn


def setup_seed(seed):
    torch.manual_seed(seed)
    torch.random.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)


def check_inference_engine(use_engine=False, prompt_template=None, do_sample=True, policy=None):
    setup_seed(20)
    tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
    model = LlamaForCausalLM(
        LlamaConfig(
            vocab_size=50000,
            hidden_size=512,
            intermediate_size=1536,
            num_attention_heads=4,
            num_key_value_heads=2,
            num_hidden_layers=16,
        )
    ).cuda()
    model = model.eval()
    inputs = [
        "介绍一下今天的北京,比如故宫,天安门,长城或者其他的一些景点,",
        "介绍一下武汉,",
    ]

    output_len = 38
    do_sample = do_sample
    top_p = 0.5
    top_k = 50

    if use_engine:
        inference_config = InferenceConfig(
            max_output_len=output_len,
            prompt_template=prompt_template,
            dtype="fp32",
            use_cuda_kernel=True,
            tp_size=dist.get_world_size(),
        )
        inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True, model_policy=policy)
        assert inference_engine.generation_config.max_new_tokens == output_len
        inference_engine.add_request(prompts=inputs)
        assert inference_engine.request_handler._has_waiting()
        generation_config = GenerationConfig(
            max_new_tokens=output_len, do_sample=do_sample, dtype="fp32", top_p=top_p, top_k=top_k
        )
        outputs = inference_engine.generate(generation_config=generation_config)
    else:
        if prompt_template:
            # apply prompt template
            inputs = [_DEFAULT_PROMPT_TEMPLATES[prompt_template].format(input_text=input_text) for input_text in inputs]
        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.pad_token_id = tokenizer.eos_token_id
        inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"]
        inputs = inputs.cuda()
        generation_config = GenerationConfig(
            do_sample=do_sample,
            dtype="fp32",
            top_p=top_p,
            top_k=top_k,
            pad_token_id=tokenizer.pad_token_id,
            max_new_tokens=output_len,
        )
        outputs = model.generate(inputs, generation_config=generation_config)
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

    return outputs


def run_engine(world_size, **kwargs):
    manager = Manager()
    result_list = manager.list([-1] * world_size)  # Create a shared list

    spawn(run_dist, world_size, func_to_run=check_inference_engine, ret=result_list, **kwargs)
    return result_list[0]


def check_spec_dec(num_layers, max_length):
    torch.manual_seed(123)

    tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
    # Dummy configs for testing
    toy_config = LlamaConfig(num_hidden_layers=num_layers)
    toy_config.pad_token_id = tokenizer.eos_token_id
    drafter_model = LlamaForCausalLM(toy_config)
    drafter_model = drafter_model.eval().cuda()
    large_config = LlamaConfig(
        hidden_size=4096,
        intermediate_size=11008,
        num_attention_heads=32,
        num_hidden_layers=8,
        num_key_value_heads=32,
        max_position_embeddings=2048,
    )
    large_config.pad_token_id = tokenizer.eos_token_id
    main_model = LlamaForCausalLM(large_config)

    inference_config = InferenceConfig(
        dtype="fp16",
        micro_batch_size=1,
        max_batch_size=1,
        max_input_len=128,
        max_output_len=128,
        prefill_ratio=1.2,
        block_size=16,
    )
    engine = InferenceEngine(main_model, tokenizer, inference_config)
    engine.enable_spec_dec(drafter_model, n_spec_tokens=5)

    dummy_inputs = torch.randint(low=5, high=1000, size=(1, 10), dtype=torch.long, device="cuda")
    generation_config = GenerationConfig(
        pad_token_id=tokenizer.eos_token_id,
        max_length=max_length,
        eos_token_id=tokenizer.eos_token_id,
    )
    out, out_token_ids = engine.generate(
        prompts_token_ids=dummy_inputs, generation_config=generation_config, return_token_ids=True
    )
    engine.disable_spec_dec()
    engine.clear_spec_dec()

    assert not engine.use_spec_dec
    assert engine.drafter is None and engine.drafter_model is None

    max_new_tokens = max_length - dummy_inputs.size(1)
    assert len(out) == 1
    assert len(out_token_ids) == 1 and len(out_token_ids[0]) == max_new_tokens

    # test GLIDE model
    glide_config = GlideLlamaConfig(
        intermediate_size=8192,
        large_hidden_size=4096,
        large_num_attention_heads=32,
        num_hidden_layers=num_layers,
    )
    glide_model = GlideLlamaForCausalLM(glide_config)
    engine.enable_spec_dec(glide_model, use_glide_drafter=True)

    out, out_token_ids = engine.generate(
        prompts_token_ids=dummy_inputs, generation_config=generation_config, return_token_ids=True
    )
    engine.clear_spec_dec()

    assert len(out) == 1
    assert len(out_token_ids) == 1 and len(out_token_ids[0]) == max_new_tokens


def run_dist(rank, world_size, port, func_to_run, ret=None, **kwargs):
    colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost")

    if ret:
        ret[rank] = func_to_run(**kwargs)
    else:
        func_to_run(**kwargs)


@pytest.mark.largedist
@parameterize("prompt_template", [None, "llama"])
@parameterize("do_sample", [False])
@rerun_if_address_is_in_use()
def test_tp_engine(prompt_template, do_sample):
    kwargs1 = {
        "use_engine": True,
        "prompt_template": prompt_template,
        "do_sample": do_sample,
        "policy": NoPaddingLlamaModelInferPolicy(),
    }

    kwargs2 = {"use_engine": False, "prompt_template": prompt_template, "do_sample": do_sample, "policy": None}

    colossal_tp_1_output = run_engine(1, **kwargs1)
    colossal_tp_2_output = run_engine(2, **kwargs1)
    transformer_tp_1_output = run_engine(1, **kwargs2)

    for s1, s2, s3 in zip(colossal_tp_1_output, colossal_tp_2_output, transformer_tp_1_output):
        assert s1 == s3, f"\nColossalAI TP=1 Output: {s1}\nTransformers Output: {s3}"
        assert s1 == s2, f"\nColossalAI TP=1 Output: {s1}\nColossalAI TP=2 Output: {s2}"


@pytest.mark.largedist
@parameterize("num_layers", [1])
@parameterize("max_length", [64])
@rerun_if_address_is_in_use()
def test_spec_dec(num_layers, max_length):
    spawn(run_dist, 1, func_to_run=check_spec_dec, num_layers=num_layers, max_length=max_length)


if __name__ == "__main__":
    test_tp_engine()
    test_spec_dec()