from functools import partial import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp import colossalai from colossalai.gemini import TensorState from colossalai.gemini.chunk import Chunk from colossalai.tensor import ColoParameter from colossalai.tensor import ProcessGroup as ColoProcessGroup from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port, get_current_device def dist_sum(x): temp = torch.tensor([x], device=get_current_device()) dist.all_reduce(temp) return temp.item() def add_param(param_list, param_cp_list, *args, **kwargs): param = ColoParameter(torch.randn(*args, **kwargs)) param_list.append(param) param_cp_list.append(param.clone()) def check_euqal(param, param_cp): if param.device != param_cp.device: temp = param.data.to(param_cp.device) else: temp = param.data return torch.equal(temp, param_cp.data) @parameterize('init_device', [None, torch.device('cpu')]) @parameterize('keep_gathered', [True, False]) @parameterize('pin_memory', [True, False]) def exam_chunk_basic(init_device, keep_gathered, pin_memory): world_size = torch.distributed.get_world_size() pg = ColoProcessGroup() my_chunk = Chunk(chunk_size=1024, process_group=pg, dtype=torch.float32, init_device=init_device, cpu_shard_init=True, keep_gathered=keep_gathered, pin_memory=pin_memory) param_list = [] param_cp_list = [] add_param(param_list, param_cp_list, 8, 8, 8, device='cuda') add_param(param_list, param_cp_list, 4, 4) add_param(param_list, param_cp_list, 4, 8, 2, device='cuda') add_param(param_list, param_cp_list, 1, 1, 5) for param in param_list: my_chunk.append_tensor(param) assert my_chunk.utilized_size == 597 for param, param_cp in zip(param_list, param_cp_list): check_euqal(param, param_cp) my_chunk.close_chunk() if keep_gathered is False: assert my_chunk.cpu_shard.size(0) == 1024 // world_size assert my_chunk.device_type == 'cpu' assert my_chunk.can_move my_chunk.shard_move(get_current_device()) else: assert my_chunk.chunk_total.size(0) == 1024 assert my_chunk.device_type == 'cuda' assert not my_chunk.can_move assert dist_sum(my_chunk.valid_end) == my_chunk.utilized_size flag = my_chunk.has_inf_or_nan assert not flag, "has_inf_or_nan is {}".format(flag) my_chunk.access_chunk() assert my_chunk.device_type == 'cuda' for param, param_cp in zip(param_list, param_cp_list): check_euqal(param, param_cp) assert my_chunk.tensors_state_monitor[TensorState.HOLD] == 4 my_chunk.tensor_trans_state(param_list[0], TensorState.COMPUTE) assert my_chunk.tensors_state_monitor[TensorState.HOLD] == 3 assert my_chunk.tensors_state_monitor[TensorState.COMPUTE] == 1 assert not my_chunk.can_release for param in param_list: my_chunk.tensor_trans_state(param, TensorState.COMPUTE) my_chunk.tensor_trans_state(param, TensorState.READY_FOR_REDUCE) assert my_chunk.tensors_state_monitor[TensorState.READY_FOR_REDUCE] == 4 assert my_chunk.can_reduce my_chunk.reduce() assert my_chunk.tensors_state_monitor[TensorState.HOLD] == 4 if keep_gathered is False: assert my_chunk.cuda_shard.size(0) == 1024 // world_size assert my_chunk.device_type == 'cuda' assert my_chunk.can_move else: assert my_chunk.chunk_total.size(0) == 1024 assert my_chunk.device_type == 'cuda' assert not my_chunk.can_move def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_chunk_basic() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2, 4]) @rerun_if_address_is_in_use() def test_chunk_function(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_chunk_function(4)