from copy import deepcopy import numpy as np import torch from colossalai.gemini.memory_tracer.model_data_memtracer import GLOBAL_CUDA_MEM_INFO from colossalai.gemini.memory_tracer.runtime_mem_tracer import RuntimeMemTracer from colossalai.utils.model.colo_init_context import ColoInitContext from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs def run_fwd_bwd(model, data, label, criterion, enable_autocast=False, dtype=torch.half): with torch.cuda.amp.autocast(enabled=enable_autocast): if criterion: y = model(data) loss = criterion(y, label) else: loss = model(data, label) loss = loss.to(dtype) model.backward(loss) def test_runtime_mem_tracer(): test_models = ['gpt2', 'bert', 'simple_net', 'repeated_computed_layers', 'nested_model'] for model_name in test_models: get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, _, _, criterion = get_components_func() with ColoInitContext(device=torch.device('cpu')): model = model_builder(checkpoint=True) model_bk = deepcopy(model) runtime_mem_tracer = RuntimeMemTracer(model) for i, (data, label) in enumerate(train_dataloader): if i > 1: break data = data.cuda() label = label.cuda() run_fwd_bwd(runtime_mem_tracer, data, label, criterion, False) for p1, p2 in zip(model_bk.parameters(), model.parameters()): torch.allclose(p1.to(torch.half), p2) cuda_non_model_data_list = np.array(GLOBAL_CUDA_MEM_INFO.non_model_data_list) / 1024**2 print("cuda_non_model_data_list", len(cuda_non_model_data_list)) # print(GLOBAL_CUDA_MEM_INFO.non_model_data_list) del model if __name__ == '__main__': test_runtime_mem_tracer()