import tempfile import pytest import torch import colossalai from colossalai.booster.plugin.gemini_plugin import GeminiCheckpointIO from colossalai.testing import check_state_dict_equal, parameterize, rerun_if_address_is_in_use, spawn from colossalai.utils.cuda import get_current_device from colossalai.zero import ColoInitContext, ZeroDDP from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration from colossalai.zero.gemini.gemini_mgr import GeminiManager from tests.components_to_test.registry import non_distributed_component_funcs @parameterize('placement_policy', ['cuda', 'cpu']) @parameterize('model_name', ['bert']) @parameterize('use_safetensors', [True, False]) def exam_state_dict_with_origin(placement_policy, model_name, use_safetensors: bool): from transformers import BertForSequenceClassification model_ckpt_dir = tempfile.TemporaryDirectory() get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, *_ = get_components_func() with ColoInitContext(device=(get_current_device())): bert_model = model_builder() bert_model.config.save_pretrained(save_directory=(model_ckpt_dir.name)) config_dict, *_ = search_chunk_configuration(bert_model, search_range_mb=1, search_interval_byte=100) chunk_manager = ChunkManager(config_dict) gemini_manager = GeminiManager(placement_policy, chunk_manager) bert_model = ZeroDDP(bert_model, gemini_manager) bert_model.train() ckpt_io = GeminiCheckpointIO() if ckpt_io.coordinator.is_master(): model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2 ckpt_io.save_model(bert_model, (model_ckpt_dir.name), True, True, '', (model_size / 3), use_safetensors=use_safetensors) new_bert_model = BertForSequenceClassification.from_pretrained(model_ckpt_dir.name) check_state_dict_equal(bert_model.state_dict(only_rank_0=True, dtype=(torch.float32)), new_bert_model.state_dict(), False) model_ckpt_dir.cleanup() @parameterize('placement_policy', ['cuda', 'cpu']) @parameterize('model_name', ['gpt2', 'bert']) @parameterize('use_safetensors', [True, False]) def exam_state_dict(placement_policy, model_name: str, use_safetensors: bool): get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, *_ = get_components_func() with ColoInitContext(device=(get_current_device())): model = model_builder() new_model = model_builder() config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100) chunk_manager = ChunkManager(config_dict) gemini_manager = GeminiManager(placement_policy, chunk_manager) model = ZeroDDP(model, gemini_manager) model.train() #new model new_config_dict, *_ = search_chunk_configuration(new_model, search_range_mb=1, search_interval_byte=100) new_chunk_manager = ChunkManager(new_config_dict) new_gemini_manager = GeminiManager(placement_policy, new_chunk_manager) new_model = ZeroDDP(new_model, new_gemini_manager) model_ckpt_dir = tempfile.TemporaryDirectory() ckpt_io = GeminiCheckpointIO() model_size = sum(p.numel() * p.element_size() for p in model.parameters()) / 1024**2 ckpt_io.save_model(model, (model_ckpt_dir.name), True, True, 'epoch', (model_size / 3), use_safetensors=use_safetensors) if ckpt_io.coordinator.is_master(): ckpt_io.load_model(new_model, (model_ckpt_dir.name), strict=True) model_dict = model.state_dict(only_rank_0=True) new_model_dict = new_model.state_dict(only_rank_0=True) check_state_dict_equal(model_dict, new_model_dict, False) model_ckpt_dir.cleanup() def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_state_dict() exam_state_dict_with_origin() @pytest.mark.dist @pytest.mark.parametrize('world_size', [4, 4]) @rerun_if_address_is_in_use() def test_gemini_ckpIO(world_size): spawn(run_dist, world_size)