/*This code from NVIDIA apex: * https://github.com/NVIDIA/apex * with minor changes. */ #include #include #include "ATen/ATen.h" #include "ATen/AccumulateType.h" #include "ATen/cuda/CUDAContext.h" #include "ATen/cuda/DeviceUtils.cuh" #include "common/micros.h" template __device__ void cuWelfordOnlineSum(const U curr, U& mu, U& sigma2, U& count) { count = count + U(1); U delta = curr - mu; U lmean = mu + delta / count; mu = lmean; U delta2 = curr - lmean; sigma2 = sigma2 + delta * delta2; } template __device__ void cuChanOnlineSum(const U muB, const U sigma2B, const U countB, U& mu, U& sigma2, U& count) { U delta = muB - mu; U nA = count; U nB = countB; count = count + countB; U nX = count; if (nX > U(0)) { nA = nA / nX; nB = nB / nX; mu = nA * mu + nB * muB; sigma2 = sigma2 + sigma2B + delta * delta * nA * nB * nX; } else { mu = U(0); sigma2 = U(0); } } template __device__ void cuWelfordMuSigma2(const T* __restrict__ vals, const int n1, const int n2, const int i1, U& mu, U& sigma2, U* buf) { // Assumptions: // 1) blockDim.x == warpSize // 2) Tensor is contiguous // 3) 2*blockDim.y*sizeof(U)+blockDim.y*sizeof(int) shared memory available. // // compute variance and mean over n2 U count = U(0); mu = U(0); sigma2 = U(0); if (i1 < n1) { // one warp normalizes one n1 index, // synchronization is implicit // initialize with standard Welford algorithm const int numx = blockDim.x * blockDim.y; const int thrx = threadIdx.x + threadIdx.y * blockDim.x; const T* lvals = vals + i1 * n2; int l = 4 * thrx; for (; l + 3 < n2; l += 4 * numx) { for (int k = 0; k < 4; ++k) { U curr = static_cast(lvals[l + k]); cuWelfordOnlineSum(curr, mu, sigma2, count); } } for (; l < n2; ++l) { U curr = static_cast(lvals[l]); cuWelfordOnlineSum(curr, mu, sigma2, count); } // intra-warp reductions for (int l = 0; l <= 4; ++l) { int srcLaneB = (threadIdx.x + (1 << l)) & 31; U muB = WARP_SHFL(mu, srcLaneB); U countB = WARP_SHFL(count, srcLaneB); U sigma2B = WARP_SHFL(sigma2, srcLaneB); cuChanOnlineSum(muB, sigma2B, countB, mu, sigma2, count); } // threadIdx.x == 0 has correct values for each warp // inter-warp reductions if (blockDim.y > 1) { U* ubuf = (U*)buf; U* ibuf = (U*)(ubuf + blockDim.y); for (int offset = blockDim.y / 2; offset > 0; offset /= 2) { // upper half of warps write to shared if (threadIdx.x == 0 && threadIdx.y >= offset && threadIdx.y < 2 * offset) { const int wrt_y = threadIdx.y - offset; ubuf[2 * wrt_y] = mu; ubuf[2 * wrt_y + 1] = sigma2; ibuf[wrt_y] = count; } __syncthreads(); // lower half merges if (threadIdx.x == 0 && threadIdx.y < offset) { U muB = ubuf[2 * threadIdx.y]; U sigma2B = ubuf[2 * threadIdx.y + 1]; U countB = ibuf[threadIdx.y]; cuChanOnlineSum(muB, sigma2B, countB, mu, sigma2, count); } __syncthreads(); } // threadIdx.x = 0 && threadIdx.y == 0 only thread that has correct values if (threadIdx.x == 0 && threadIdx.y == 0) { ubuf[0] = mu; ubuf[1] = sigma2; } __syncthreads(); mu = ubuf[0]; sigma2 = ubuf[1] / U(n2); // don't care about final value of count, we know count == n2 } else { mu = WARP_SHFL(mu, 0); sigma2 = WARP_SHFL(sigma2 / U(n2), 0); } } } template <> __device__ void cuWelfordMuSigma2(const at::Half* __restrict__ vals, const int n1, const int n2, const int i1, float& mu, float& sigma2, float* buf) { // Assumptions: // 1) blockDim.x == warpSize // 2) Tensor is contiguous // 3) 2*blockDim.y*sizeof(U)+blockDim.y*sizeof(int) shared memory available. // // compute variance and mean over n2 float count = 0.0f; mu = float(0); sigma2 = float(0); if (i1 < n1) { // one warp normalizes one n1 index, // synchronization is implicit // initialize with standard Welford algorithm const int numx = blockDim.x * blockDim.y; const int thrx = threadIdx.x + threadIdx.y * blockDim.x; const at::Half* lvals = vals + i1 * n2; int l = 8 * thrx; if ((((size_t)lvals) & 3) != 0) { // 16 bit alignment // first thread consumes first point if (thrx == 0) { float curr = static_cast(lvals[0]); cuWelfordOnlineSum(curr, mu, sigma2, count); } ++l; } // at this point, lvals[l] are 32 bit aligned for all threads. for (; l + 7 < n2; l += 8 * numx) { for (int k = 0; k < 8; k += 2) { float2 curr = __half22float2(*((__half2*)(lvals + l + k))); cuWelfordOnlineSum(curr.x, mu, sigma2, count); cuWelfordOnlineSum(curr.y, mu, sigma2, count); } } for (; l < n2; ++l) { float curr = static_cast(lvals[l]); cuWelfordOnlineSum(curr, mu, sigma2, count); } // intra-warp reductions for (int l = 0; l <= 4; ++l) { int srcLaneB = (threadIdx.x + (1 << l)) & 31; float muB = WARP_SHFL(mu, srcLaneB); float countB = WARP_SHFL(count, srcLaneB); float sigma2B = WARP_SHFL(sigma2, srcLaneB); cuChanOnlineSum(muB, sigma2B, countB, mu, sigma2, count); } // threadIdx.x == 0 has correct values for each warp // inter-warp reductions if (blockDim.y > 1) { float* ubuf = (float*)buf; float* ibuf = (float*)(ubuf + blockDim.y); for (int offset = blockDim.y / 2; offset > 0; offset /= 2) { // upper half of warps write to shared if (threadIdx.x == 0 && threadIdx.y >= offset && threadIdx.y < 2 * offset) { const int wrt_y = threadIdx.y - offset; ubuf[2 * wrt_y] = mu; ubuf[2 * wrt_y + 1] = sigma2; ibuf[wrt_y] = count; } __syncthreads(); // lower half merges if (threadIdx.x == 0 && threadIdx.y < offset) { float muB = ubuf[2 * threadIdx.y]; float sigma2B = ubuf[2 * threadIdx.y + 1]; float countB = ibuf[threadIdx.y]; cuChanOnlineSum(muB, sigma2B, countB, mu, sigma2, count); } __syncthreads(); } // threadIdx.x = 0 && threadIdx.y == 0 only thread that has correct values if (threadIdx.x == 0 && threadIdx.y == 0) { ubuf[0] = mu; ubuf[1] = sigma2; } __syncthreads(); mu = ubuf[0]; sigma2 = ubuf[1] / float(n2); // don't care about final value of count, we know count == n2 } else { mu = WARP_SHFL(mu, 0); sigma2 = WARP_SHFL(sigma2 / float(n2), 0); } } } template U rsqrt(U v) { return U(1) / sqrt(v); } template <> float rsqrt(float v) { return rsqrtf(v); } template <> double rsqrt(double v) { return rsqrt(v); } namespace { // This is the un-specialized struct. Note that we prevent instantiation of // this struct by putting an undefined symbol in the function body so it won't // compile. // template // struct SharedMemory // { // // Ensure that we won't compile any un-specialized types // __device__ T *getPointer() // { // extern __device__ void error(void); // error(); // return NULL; // } // }; // https://github.com/NVIDIA/apex/issues/246 template struct SharedMemory; template <> struct SharedMemory { __device__ float* getPointer() { extern __shared__ float s_float[]; return s_float; } }; } // namespace template __global__ void cuApplyLayerNorm(V* __restrict__ output_vals, U* __restrict__ mean, U* __restrict__ invvar, const T* __restrict__ vals, const int n1, const int n2, const U epsilon, const V* __restrict__ gamma, const V* __restrict__ beta) { // Assumptions: // 1) blockDim.x == warpSize // 2) Tensors are contiguous // for (auto i1 = blockIdx.y; i1 < n1; i1 += gridDim.y) { SharedMemory shared; U* buf = shared.getPointer(); U mu, sigma2; cuWelfordMuSigma2(vals, n1, n2, i1, mu, sigma2, buf); const T* lvals = vals + i1 * n2; V* ovals = output_vals + i1 * n2; U c_invvar = rsqrt(sigma2 + epsilon); const int numx = blockDim.x * blockDim.y; const int thrx = threadIdx.x + threadIdx.y * blockDim.x; if (gamma != NULL && beta != NULL) { for (int i = thrx; i < n2; i += numx) { U curr = static_cast(lvals[i]); ovals[i] = gamma[i] * static_cast(c_invvar * (curr - mu)) + beta[i]; } } else { for (int i = thrx; i < n2; i += numx) { U curr = static_cast(lvals[i]); ovals[i] = static_cast(c_invvar * (curr - mu)); } } if (threadIdx.x == 0 && threadIdx.y == 0) { mean[i1] = mu; invvar[i1] = c_invvar; } } } template __device__ void cuLoadWriteStridedInputs( const int i1_block, const int thr_load_row_off, const int thr_load_col_off, const int i2_off, const int row_stride, U* warp_buf1, U* warp_buf2, const T* input, const V* dout, const int i1_end, const int n2, const U* __restrict__ mean, const U* __restrict__ invvar) { int i1 = i1_block + thr_load_row_off; if (i1 < i1_end) { U curr_mean = mean[i1]; U curr_invvar = invvar[i1]; for (int k = 0; k < blockDim.y; ++k) { int i2 = i2_off + k; int load_idx = i1 * n2 + i2; int write_idx = thr_load_row_off * row_stride + thr_load_col_off + k; if (i2 < n2) { U curr_input = static_cast(input[load_idx]); U curr_dout = static_cast(dout[load_idx]); warp_buf1[write_idx] = curr_dout; warp_buf2[write_idx] = curr_dout * (curr_input - curr_mean) * curr_invvar; } else { warp_buf1[write_idx] = U(0); warp_buf2[write_idx] = U(0); } } } else { for (int k = 0; k < blockDim.y; ++k) { int write_idx = thr_load_row_off * row_stride + thr_load_col_off + k; warp_buf1[write_idx] = U(0); warp_buf2[write_idx] = U(0); } } } template __device__ void cuLoadAddStridedInputs( const int i1_block, const int thr_load_row_off, const int thr_load_col_off, const int i2_off, const int row_stride, U* warp_buf1, U* warp_buf2, const T* input, const V* dout, const int i1_end, const int n2, const U* __restrict__ mean, const U* __restrict__ invvar) { int i1 = i1_block + thr_load_row_off; if (i1 < i1_end) { U curr_mean = mean[i1]; U curr_invvar = invvar[i1]; for (int k = 0; k < blockDim.y; ++k) { int i2 = i2_off + k; int load_idx = i1 * n2 + i2; int write_idx = thr_load_row_off * row_stride + thr_load_col_off + k; if (i2 < n2) { U curr_input = static_cast(input[load_idx]); U curr_dout = static_cast(dout[load_idx]); warp_buf1[write_idx] += curr_dout; warp_buf2[write_idx] += curr_dout * (curr_input - curr_mean) * curr_invvar; } } } } template __global__ void cuComputePartGradGammaBeta( const V* __restrict__ dout, const T* __restrict__ input, const int n1, const int n2, const U* __restrict__ mean, const U* __restrict__ invvar, U epsilon, U* part_grad_gamma, U* part_grad_beta) { const int numsegs_n1 = (n1 + blockDim.y * blockDim.y - 1) / (blockDim.y * blockDim.y); const int segs_per_block = (numsegs_n1 + gridDim.y - 1) / gridDim.y; const int i1_beg = blockIdx.y * segs_per_block * blockDim.y * blockDim.y; const int i1_beg_plus_one = (blockIdx.y + 1) * segs_per_block * blockDim.y * blockDim.y; const int i1_end = i1_beg_plus_one < n1 ? i1_beg_plus_one : n1; const int row_stride = blockDim.x + 1; const int thr_load_col_off = (threadIdx.x * blockDim.y) & (blockDim.x - 1); const int thr_load_row_off = (threadIdx.x * blockDim.y) / blockDim.x + threadIdx.y * blockDim.y; const int i2_off = blockIdx.x * blockDim.x + thr_load_col_off; SharedMemory shared; U* buf = shared.getPointer(); // buf has at least blockDim.x * blockDim.y * // blockDim.y + (blockDim.y - // 1)*(blockDim.x/blockDim.y) elements U* warp_buf1 = (U*)buf; U* warp_buf2 = warp_buf1 + blockDim.y * blockDim.y * row_stride; // compute partial sums from strided inputs // do this to increase number of loads in flight cuLoadWriteStridedInputs(i1_beg, thr_load_row_off, thr_load_col_off, i2_off, row_stride, warp_buf1, warp_buf2, input, dout, i1_end, n2, mean, invvar); for (int i1_block = i1_beg + blockDim.y * blockDim.y; i1_block < i1_end; i1_block += blockDim.y * blockDim.y) { cuLoadAddStridedInputs(i1_block, thr_load_row_off, thr_load_col_off, i2_off, row_stride, warp_buf1, warp_buf2, input, dout, i1_end, n2, mean, invvar); } __syncthreads(); // inter-warp reductions // sum within each warp U acc1 = U(0); U acc2 = U(0); for (int k = 0; k < blockDim.y; ++k) { int row1 = threadIdx.y + k * blockDim.y; int idx1 = row1 * row_stride + threadIdx.x; acc1 += warp_buf1[idx1]; acc2 += warp_buf2[idx1]; } warp_buf1[threadIdx.y * row_stride + threadIdx.x] = acc1; warp_buf2[threadIdx.y * row_stride + threadIdx.x] = acc2; __syncthreads(); // sum all warps for (int offset = blockDim.y / 2; offset > 1; offset /= 2) { if (threadIdx.y < offset) { int row1 = threadIdx.y; int row2 = threadIdx.y + offset; int idx1 = row1 * row_stride + threadIdx.x; int idx2 = row2 * row_stride + threadIdx.x; warp_buf1[idx1] += warp_buf1[idx2]; warp_buf2[idx1] += warp_buf2[idx2]; } __syncthreads(); } int i2 = blockIdx.x * blockDim.x + threadIdx.x; if (threadIdx.y == 0 && i2 < n2) { int row1 = threadIdx.y; int row2 = threadIdx.y + 1; int idx1 = row1 * row_stride + threadIdx.x; int idx2 = row2 * row_stride + threadIdx.x; part_grad_beta[blockIdx.y * n2 + i2] = warp_buf1[idx1] + warp_buf1[idx2]; part_grad_gamma[blockIdx.y * n2 + i2] = warp_buf2[idx1] + warp_buf2[idx2]; } } template __global__ void cuComputeGradGammaBeta(const U* part_grad_gamma, const U* part_grad_beta, const int part_size, const int n1, const int n2, V* grad_gamma, V* grad_beta) { // sum partial gradients for gamma and beta SharedMemory shared; U* buf = shared.getPointer(); int i2 = blockIdx.x * blockDim.x + threadIdx.x; if (i2 < n2) { // each warp does sequential reductions until reduced part_size is num_warps int num_warp_reductions = part_size / blockDim.y; U sum_gamma = U(0); U sum_beta = U(0); const U* part_grad_gamma_ptr = part_grad_gamma + threadIdx.y * num_warp_reductions * n2 + i2; const U* part_grad_beta_ptr = part_grad_beta + threadIdx.y * num_warp_reductions * n2 + i2; for (int warp_offset = 0; warp_offset < num_warp_reductions; ++warp_offset) { sum_gamma += part_grad_gamma_ptr[warp_offset * n2]; sum_beta += part_grad_beta_ptr[warp_offset * n2]; } // inter-warp reductions const int nbsize3 = blockDim.x * blockDim.y / 2; for (int offset = blockDim.y / 2; offset >= 1; offset /= 2) { // top half write to shared memory if (threadIdx.y >= offset && threadIdx.y < 2 * offset) { const int write_idx = (threadIdx.y - offset) * blockDim.x + threadIdx.x; buf[write_idx] = sum_gamma; buf[write_idx + nbsize3] = sum_beta; } __syncthreads(); // bottom half sums if (threadIdx.y < offset) { const int read_idx = threadIdx.y * blockDim.x + threadIdx.x; sum_gamma += buf[read_idx]; sum_beta += buf[read_idx + nbsize3]; } __syncthreads(); } // write out fully summed gradients if (threadIdx.y == 0) { grad_gamma[i2] = sum_gamma; grad_beta[i2] = sum_beta; } } } template __global__ void cuComputeGradInput(const V* __restrict__ dout, const T* __restrict__ input, const int n1, const int n2, const U* __restrict__ mean, const U* __restrict__ invvar, U epsilon, const V* gamma, T* grad_input) { for (auto i1 = blockIdx.y; i1 < n1; i1 += gridDim.y) { U sum_loss1 = U(0); U sum_loss2 = U(0); const U c_mean = mean[i1]; const U c_invvar = invvar[i1]; const T* k_input = input + i1 * n2; const V* k_dout = dout + i1 * n2; const int numx = blockDim.x * blockDim.y; const int thrx = threadIdx.x + threadIdx.y * blockDim.x; if (gamma != NULL) { int l = 4 * thrx; for (; l + 3 < n2; l += 4 * numx) { for (int k = 0; k < 4; ++k) { const U c_h = static_cast(k_input[l + k]); const U c_loss = static_cast(k_dout[l + k]); sum_loss1 += c_loss * gamma[l + k]; sum_loss2 += c_loss * gamma[l + k] * (c_h - c_mean) * c_invvar; } } for (; l < n2; ++l) { const U c_h = static_cast(k_input[l]); const U c_loss = static_cast(k_dout[l]); sum_loss1 += c_loss * gamma[l]; sum_loss2 += c_loss * gamma[l] * (c_h - c_mean) * c_invvar; } } else { int l = 4 * thrx; for (; l + 3 < n2; l += 4 * numx) { for (int k = 0; k < 4; ++k) { const U c_h = static_cast(k_input[l + k]); const U c_loss = static_cast(k_dout[l + k]); sum_loss1 += c_loss; sum_loss2 += c_loss * (c_h - c_mean) * c_invvar; } } for (; l < n2; ++l) { const U c_h = static_cast(k_input[l]); const U c_loss = static_cast(k_dout[l]); sum_loss1 += c_loss; sum_loss2 += c_loss * (c_h - c_mean) * c_invvar; } } // intra-warp reductions for (int mask = blockDim.x / 2; mask > 0; mask /= 2) { sum_loss1 += WARP_SHFL_XOR(sum_loss1, mask); sum_loss2 += WARP_SHFL_XOR(sum_loss2, mask); } // inter-warp reductions if (blockDim.y > 1) { SharedMemory shared; U* buf = shared.getPointer(); for (int offset = blockDim.y / 2; offset > 0; offset /= 2) { // upper half of warps write to shared if (threadIdx.y >= offset && threadIdx.y < 2 * offset) { const int wrt_i = (threadIdx.y - offset) * blockDim.x + threadIdx.x; buf[2 * wrt_i] = sum_loss1; buf[2 * wrt_i + 1] = sum_loss2; } __syncthreads(); // lower half merges if (threadIdx.y < offset) { const int read_i = threadIdx.y * blockDim.x + threadIdx.x; sum_loss1 += buf[2 * read_i]; sum_loss2 += buf[2 * read_i + 1]; } __syncthreads(); } if (threadIdx.y == 0) { buf[2 * threadIdx.x] = sum_loss1; buf[2 * threadIdx.x + 1] = sum_loss2; } __syncthreads(); if (threadIdx.y != 0) { sum_loss1 = buf[2 * threadIdx.x]; sum_loss2 = buf[2 * threadIdx.x + 1]; } } // all threads now have the two sums over l U fH = (U)n2; U term1 = (U(1) / fH) * c_invvar; T* k_grad_input = grad_input + i1 * n2; if (gamma != NULL) { for (int l = thrx; l < n2; l += numx) { const U c_h = static_cast(k_input[l]); const U c_loss = static_cast(k_dout[l]); U f_grad_input = fH * c_loss * gamma[l]; f_grad_input -= sum_loss1; f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2; f_grad_input *= term1; k_grad_input[l] = static_cast(f_grad_input); } } else { for (int l = thrx; l < n2; l += numx) { const U c_h = static_cast(k_input[l]); const U c_loss = static_cast(k_dout[l]); U f_grad_input = fH * c_loss; f_grad_input -= sum_loss1; f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2; f_grad_input *= term1; k_grad_input[l] = static_cast(f_grad_input); } } } } template void HostApplyLayerNorm(V* output, U* mean, U* invvar, const T* input, int n1, int n2, double epsilon, const V* gamma, const V* beta) { auto stream = at::cuda::getCurrentCUDAStream().stream(); const dim3 threads(32, 4, 1); const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1]; const dim3 blocks(1, std::min((uint64_t)n1, maxGridY), 1); int nshared = threads.y > 1 ? threads.y * sizeof(U) + (threads.y / 2) * sizeof(U) : 0; cuApplyLayerNorm<<>>( output, mean, invvar, input, n1, n2, U(epsilon), gamma, beta); } void cuda_layer_norm(at::Tensor* output, at::Tensor* mean, at::Tensor* invvar, at::Tensor* input, int n1, int n2, #ifdef VERSION_GE_1_1 at::IntArrayRef normalized_shape, #else at::IntList normalized_shape, #endif at::Tensor* gamma, at::Tensor* beta, double epsilon) { using namespace at; DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES( input->scalar_type(), output->scalar_type(), "cuda_layer_norm_kernel", HostApplyLayerNorm(output->data_ptr(), mean->data_ptr(), invvar->data_ptr(), input->data_ptr(), n1, n2, epsilon, gamma != NULL ? gamma->data_ptr() : NULL, beta != NULL ? beta->data_ptr() : NULL);) } template void HostLayerNormGradient(const V* dout, const U* mean, const U* invvar, at::Tensor* input, int n1, int n2, const V* gamma, const V* beta, double epsilon, T* grad_input, V* grad_gamma, V* grad_beta) { auto stream = at::cuda::getCurrentCUDAStream().stream(); if (gamma != NULL && beta != NULL) { // compute grad_gamma(j) and grad_beta(j) const int part_size = 16; const dim3 threads2(32, 4, 1); const dim3 blocks2((n2 + threads2.x - 1) / threads2.x, part_size, 1); const int nshared2_a = 2 * sizeof(U) * threads2.y * threads2.y * (threads2.x + 1); const int nshared2_b = threads2.x * threads2.y * sizeof(U); const int nshared2 = nshared2_a > nshared2_b ? nshared2_a : nshared2_b; at::Tensor part_grad_gamma = at::empty( {part_size, n2}, input->options().dtype(at::ScalarType::Float)); at::Tensor part_grad_beta = at::empty_like(part_grad_gamma); cuComputePartGradGammaBeta<<>>( dout, input->data_ptr(), n1, n2, mean, invvar, U(epsilon), part_grad_gamma.data_ptr(), part_grad_beta.data_ptr()); const dim3 threads3(32, 8, 1); const dim3 blocks3((n2 + threads2.x - 1) / threads2.x, 1, 1); const int nshared3 = threads3.x * threads3.y * sizeof(U); cuComputeGradGammaBeta<<>>( part_grad_gamma.data_ptr(), part_grad_beta.data_ptr(), part_size, n1, n2, grad_gamma, grad_beta); } // compute grad_input const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1]; const dim3 blocks1(1, std::min((uint64_t)n1, maxGridY), 1); const dim3 threads1(32, 4, 1); int nshared = threads1.y > 1 ? threads1.y * threads1.x * sizeof(U) : 0; cuComputeGradInput<<>>( dout, input->data_ptr(), n1, n2, mean, invvar, U(epsilon), gamma, grad_input); } void cuda_layer_norm_gradient(at::Tensor* dout, at::Tensor* mean, at::Tensor* invvar, at::Tensor* input, int n1, int n2, #ifdef VERSION_GE_1_1 at::IntArrayRef normalized_shape, #else at::IntList normalized_shape, #endif at::Tensor* gamma, at::Tensor* beta, double epsilon, at::Tensor* grad_input, at::Tensor* grad_gamma, at::Tensor* grad_beta) { using namespace at; DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES( input->scalar_type(), gamma->scalar_type(), "cuda_layer_norm_gradient_kernel", HostLayerNormGradient( dout->data_ptr(), mean->data_ptr(), invvar->data_ptr(), input, n1, n2, // TMJ pass NULL argument for gamma, beta, grad_gamma and grad_beta // if gamma Tensor is NULL on input. gamma != NULL ? gamma->data_ptr() : NULL, gamma != NULL ? beta->data_ptr() : NULL, epsilon, grad_input->data_ptr(), gamma != NULL ? grad_gamma->data_ptr() : NULL, gamma != NULL ? grad_beta->data_ptr() : NULL);) }