""" Adapted from the pytorch-lamb library at https://github.com/cybertronai/pytorch-lamb """ import torch from torch.optim import Optimizer from colossalai.registry import OPTIMIZERS @OPTIMIZERS.register_module class Lamb(Optimizer): r"""Implements Lamb algorithm. It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-6) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) adam (bool, optional): always use trust ratio = 1, which turns this into Adam. Useful for comparison purposes. .. _Large Batch Optimization for Deep Learning\: Training BERT in 76 minutes: https://arxiv.org/abs/1904.00962 """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6, weight_decay=0, adam=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError( "Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError( "Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) self.adam = adam super(Lamb, self).__init__(params, defaults) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( 'Lamb does not support sparse gradients, consider SparseAdam instad.') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient # m_t exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) # v_t exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) # Paper v3 does not use debiasing. # bias_correction1 = 1 - beta1 ** state['step'] # bias_correction2 = 1 - beta2 ** state['step'] # Apply bias to lr to avoid broadcast. # * math.sqrt(bias_correction2) / bias_correction1 step_size = group['lr'] weight_norm = p.data.pow(2).sum().sqrt() adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps']) if group['weight_decay'] != 0: adam_step.add_(p.data, alpha=group['weight_decay']) adam_norm = adam_step.pow(2).sum().sqrt() if weight_norm == 0 or adam_norm == 0: trust_ratio = 1 else: trust_ratio = weight_norm / adam_norm state['weight_norm'] = weight_norm state['adam_norm'] = adam_norm state['trust_ratio'] = trust_ratio if self.adam: trust_ratio = 1 p.data.add_(adam_step, alpha=-step_size * trust_ratio) return loss