from .estimate_memory import EstimateMemory from .reorder_graph import ReorderGraph from .trace_indice import TraceIndice from .utils import NodeMgr, is_non_compute_node class SelectChunk(object): def __init__( self, trace_indice: TraceIndice, estimate_memory: EstimateMemory, reorder_graph: ReorderGraph, node_mgr: NodeMgr, max_memory=None, ): self.trace_indice = trace_indice self.estimate_memory = estimate_memory self.reorder_graph = reorder_graph self.node_mgr = node_mgr if max_memory is not None: self.stratge = "fit_memory" self.max_memory = max_memory # MB else: self.stratge = "min_memory" def _select_best_chunk_region(self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak): if self.stratge == "min_memory": best_region = self._select_min_memory_chunk_region( possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak, ) elif self.stratge == "fit_memory": best_region = self._select_fit_memory_chunk_region( possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak, ) else: raise RuntimeError() return best_region def _select_fit_memory_chunk_region(self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak): # stop chunk if max memory satisfy memory limit if max(mem_peak) < self.max_memory: return None # remove illegal regions illegal_regions = [] for i in possible_chunk_regions: if not self._is_legal_region(i, chunk_infos): illegal_regions.append(i) for i in illegal_regions: if i in possible_chunk_regions: possible_chunk_regions.remove(i) if len(possible_chunk_regions) == 0: return None max_possible_chunk_region = (min([i["region"][0] for i in possible_chunk_regions]), max([i["region"][1] for i in possible_chunk_regions])) # get mem for chunk region regions_dict = [] for region in possible_chunk_regions: cur_region = region.copy() cur_node_list, cur_region = self.reorder_graph.tmp_reorder(self.node_mgr.get_node_list(), cur_region) cur_chunk_infos = chunk_infos + [cur_region] cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(cur_node_list, cur_chunk_infos)[0] cur_chunk_region_peak = cur_mem_peak[max_possible_chunk_region[0]:max_possible_chunk_region[1] + 1] cur_chunk_region_max_peak = max(cur_chunk_region_peak) if cur_chunk_region_max_peak < self.max_memory: regions_dict.append({ "chunk_info": region, "chunk_max_mem": cur_chunk_region_max_peak, "chunk_len": self._get_compute_node_num(region["region"][0], region["region"][1]), "reorder_chunk_info": cur_region, "reorder_node_list": cur_node_list, }) # no region found if len(regions_dict) == 0: raise RuntimeError("Search failed. Try a larger memory threshold.") # select the min chunk len chunk_len = [i["chunk_len"] for i in regions_dict] best_region_idx = chunk_len.index(min(chunk_len)) best_region = regions_dict[best_region_idx] # get max chunk size best_region = self._get_fit_chunk_size(best_region, chunk_infos) return best_region def _get_fit_chunk_size(self, chunk_region_dict, chunk_infos): chunk_size = 1 reorder_chunk_info = chunk_region_dict["reorder_chunk_info"] reorder_chunk_info["chunk_size"] = chunk_size cur_chunk_max_mem = 0 # search a region while cur_chunk_max_mem < self.max_memory: chunk_size *= 2 reorder_chunk_info["chunk_size"] = chunk_size cur_chunk_infos = chunk_infos + [reorder_chunk_info] cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(chunk_region_dict["reorder_node_list"], cur_chunk_infos)[0] cur_chunk_max_mem = max(cur_mem_peak[reorder_chunk_info["region"][0]:reorder_chunk_info["region"][1] + 1]) # search exact size chunk_info = chunk_region_dict["chunk_info"] chunk_info["chunk_size"] = self._chunk_size_binary_search(chunk_size // 2, chunk_size, chunk_region_dict, chunk_infos) return chunk_info def _chunk_size_binary_search(self, left, right, chunk_region_dict, chunk_infos): if left >= 16: gap = 4 else: gap = 1 chunk_info = chunk_region_dict["reorder_chunk_info"] while right >= left + gap: mid = int((left + right) / 2 + 0.5) chunk_info["chunk_size"] = mid cur_chunk_infos = chunk_infos + [chunk_info] cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(chunk_region_dict["reorder_node_list"], cur_chunk_infos)[0] cur_chunk_max_mem = max(cur_mem_peak[chunk_info["region"][0]:chunk_info["region"][1] + 1]) if cur_chunk_max_mem >= self.max_memory: right = mid - gap else: left = mid + gap return left def _get_compute_node_num(self, start, end): count = 0 for i in self.node_mgr.get_node_slice_by_idx(start, end + 1): if not is_non_compute_node(i): count += 1 return count def _select_min_memory_chunk_region(self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak): # remove illegal regions illegal_regions = [] for i in possible_chunk_regions: if not self._is_legal_region(i, chunk_infos): illegal_regions.append(i) for i in illegal_regions: if i in possible_chunk_regions: possible_chunk_regions.remove(i) if len(possible_chunk_regions) == 0: return None # get max possible chunk region max_possible_chunk_region = (min([i["region"][0] for i in possible_chunk_regions]), max([i["region"][1] for i in possible_chunk_regions])) # get mem for chunk region regions_dict_list = [] for region in possible_chunk_regions: cur_region = region.copy() cur_node_list, cur_region = self.reorder_graph.tmp_reorder(self.node_mgr.get_node_list(), cur_region) cur_chunk_infos = chunk_infos + [cur_region] cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(cur_node_list, cur_chunk_infos)[0] cur_chunk_region_peak = cur_mem_peak[max_possible_chunk_region[0]:max_possible_chunk_region[1] + 1] cur_chunk_region_max_peak = max(cur_chunk_region_peak) regions_dict_list.append({ "chunk_info": region, "chunk_max_mem": cur_chunk_region_max_peak, "chunk_len": self._get_compute_node_num(region["region"][0], region["region"][1]), "reorder_chunk_info": cur_region, "reorder_node_list": cur_node_list, }) # select the min mem chunk_max_mem = [i["chunk_max_mem"] for i in regions_dict_list] best_region_idx = chunk_max_mem.index(min(chunk_max_mem)) best_region = regions_dict_list[best_region_idx]["chunk_info"] if best_region is not None: best_region["chunk_size"] = 1 return best_region def _is_legal_region(self, cur_chunk_info, chunk_infos): (chunk_region_start, chunk_region_end) = cur_chunk_info["region"] if cur_chunk_info in chunk_infos: return False if chunk_region_end < chunk_region_start: return False for i in chunk_infos: region = i["region"] if not ((chunk_region_start > region[1] and chunk_region_end > region[1]) or (chunk_region_start < region[0] and chunk_region_end < region[0])): return False return True