# MIT License # Copyright (c) 2022 Ming Zhong # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import torch import torch.nn as nn from tqdm import tqdm from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer class UniEvaluator: def __init__(self, model_name_or_path, max_length=1024, device='cuda:0', cache_dir=None): """ Set up model """ self.device = device self.max_length = max_length self.config = AutoConfig.from_pretrained(model_name_or_path, cache_dir=cache_dir) self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, cache_dir=cache_dir) self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path, config=self.config, cache_dir=cache_dir) self.model.eval() self.model.to(device) self.softmax = nn.Softmax(dim=1) self.pos_id = self.tokenizer("Yes")["input_ids"][0] self.neg_id = self.tokenizer("No")["input_ids"][0] def score(self, inputs, task, category, dim, batch_size=8): """ Get scores for the given samples. final_score = postive_score / (postive_score + negative_score) """ # The implementation of "forward" in T5 still requires decoder_input_ids. # Therefore, we construct a random one-word target sequence. # The content of the target has no effect on the final scores. tgts = ["No" for _ in range(len(inputs))] pos_score_list, neg_score_list = [], [] for i in tqdm(range(0, len(inputs), batch_size), desc=f"{category}-({dim}-{task}): "): src_list = inputs[i:i + batch_size] tgt_list = tgts[i:i + batch_size] try: with torch.no_grad(): encoded_src = self.tokenizer(src_list, max_length=self.max_length, truncation=True, padding=True, return_tensors='pt') encoded_tgt = self.tokenizer(tgt_list, max_length=self.max_length, truncation=True, padding=True, return_tensors='pt') src_tokens = encoded_src['input_ids'].to(self.device) src_mask = encoded_src['attention_mask'].to(self.device) tgt_tokens = encoded_tgt['input_ids'].to(self.device)[:, 0].unsqueeze(-1) output = self.model(input_ids=src_tokens, attention_mask=src_mask, labels=tgt_tokens) logits = output.logits.view(-1, self.model.config.vocab_size) pos_score = self.softmax(logits)[:, self.pos_id] # Yes neg_score = self.softmax(logits)[:, self.neg_id] # No cur_pos_score = [x.item() for x in pos_score] cur_neg_score = [x.item() for x in neg_score] pos_score_list += cur_pos_score neg_score_list += cur_neg_score except RuntimeError: print(f'source: {src_list}') print(f'target: {tgt_list}') exit(0) score_list = [] for i in range(len(pos_score_list)): score_list.append(pos_score_list[i] / (pos_score_list[i] + neg_score_list[i])) return score_list