from enum import Enum from typing import Dict import torch import torch.distributed as dist from torch.distributed import ReduceOp __all__ = [ "CollectiveCommPattern", "CommSpec", ] class CollectiveCommPattern(Enum): GATHER_FWD_SPLIT_BWD = "gather_fwd_split_bwd" ALL2ALL_FWD_ALL2ALL_BWD = "all2all_fwd_all2all_bwd" SPLIT_FWD_GATHER_BWD = "split_fwd_gather_bwd" ALLREDUCE_FWD_IDENTITY_BWD = "all_reduce_fwd_identity_bwd" IDENTITY_FWD_ALLREDUCE_BWD = "identity_fwd_all_reduce_bwd" MIXGATHER_FWD_SPLIT_BWD = "mixgather_fwd_split_bwd" class CommSpec: """ Communication spec is used to record the communication action. It converts the communication spec to real action which will be used in runtime. It contains comm_pattern to determine the communication method, process_group_dict to determine the process groups, gather_dim and shard_dim to determine the buffer shape, and logical_process_axis Argument: comm_pattern(CollectiveCommPattern): describe the communication method used in this spec. process_group_dict(Dict): A dict which contains the process groups used to apply this CommSpec. gather_dim(int, Optional): The gather_dim of the tensor will be gathered. shard_dim(int, Optional): The shard_dim of the tensor will be sharded. logical_process_axis(Union(int, List[int]), Optional): The mesh_dim to implement the communication action. """ def __init__( self, comm_pattern: CollectiveCommPattern, process_group_dict: Dict, gather_dim: int = None, shard_dim: int = None, logical_process_axis: int = None, ): self.comm_pattern = comm_pattern self.gather_dim = gather_dim self.shard_dim = shard_dim self.logical_process_axis = logical_process_axis self.process_group_dict = process_group_dict def __repr__(self): res_list = ["CommSpec:("] if self.comm_pattern == CollectiveCommPattern.GATHER_FWD_SPLIT_BWD: res_list.append(f"comm_pattern:GATHER_FWD_SPLIT_BWD, ") res_list.append(f"gather_dim:{self.gather_dim}, ") res_list.append(f"shard_dim:{self.gather_dim}, ") res_list.append(f"logical_process_axis:{self.logical_process_axis})") elif self.comm_pattern == CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD: res_list.append(f"comm_pattern:ALL2ALL_FWD_ALL2ALL_BWD, ") res_list.append(f"gather_dim:{self.gather_dim}, ") res_list.append(f"shard_dim:{self.shard_dim}, ") res_list.append(f"logical_process_axis: {self.logical_process_axis})") elif self.comm_pattern == CollectiveCommPattern.SPLIT_FWD_GATHER_BWD: res_list.append(f"comm_pattern:SPLIT_FWD_GATHER_BWD, ") res_list.append(f"gather_dim:{self.gather_dim}, ") res_list.append(f"shard_dim:{self.shard_dim}, ") res_list.append(f"logical_process_axis:{self.logical_process_axis})") elif self.comm_pattern == CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD: res_list.append(f"comm_pattern:ALLREDUCE_FWD_IDENTITY_BWD, ") res_list.append(f"logical_process_axis:{self.logical_process_axis})") elif self.comm_pattern == CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD: res_list.append(f"comm_pattern:IDENTITY_FWD_ALLREDUCE_BWD, ") res_list.append(f"logical_process_axis:{self.logical_process_axis})") return "".join(res_list) def covert_spec_to_action(self, tensor): """ Convert CommSpec into runtime action, implement real collection communication to target tensor. The collection communication action is directed by the CommSpec. Argument: tensor(torch.Tensor): Tensor stored in each device, which could be different in different ranks. """ if self.comm_pattern in pattern_to_func_dict: tensor = pattern_to_func_dict[self.comm_pattern](tensor, self) else: tensor = tensor return tensor def _all_gather(tensor: torch.Tensor, comm_spec: CommSpec): """ Implement all gather operation on device mesh based on information provided by comm_spec. """ process_group = comm_spec.process_group_dict[comm_spec.logical_process_axis] world_size = dist.get_world_size(process_group) tensor_list = [torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device) for _ in range(world_size)] # without this contiguous operation, the all gather may get some unexpected results. tensor = tensor.contiguous() dist.all_gather(tensor_list, tensor, group=process_group) output = torch.cat(tuple(tensor_list), comm_spec.gather_dim).contiguous() return output def _split(tensor: torch.Tensor, comm_spec: CommSpec): """ Implement shard operation on device mesh based on information provided by comm_spec. """ process_group = comm_spec.process_group_dict[comm_spec.logical_process_axis] dim = comm_spec.shard_dim length = tensor.shape[comm_spec.shard_dim] // dist.get_world_size(process_group) start = length * dist.get_rank(process_group) output = torch.narrow(tensor, dim, start, length).clone().contiguous() return output def _all_to_all(tensor: torch.Tensor, comm_spec: CommSpec): """ Implement all to all operation on device mesh based on information provided by comm_spec. """ process_group = comm_spec.process_group_dict[comm_spec.logical_process_axis] world_size = dist.get_world_size(process_group) new_shape = list(tensor.shape) new_shape[comm_spec.shard_dim] = new_shape[comm_spec.shard_dim] // world_size new_shape = torch.Size(new_shape) output_tensor_list = [torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device) for _ in range(world_size)] dim = comm_spec.shard_dim length = tensor.shape[comm_spec.shard_dim] // world_size input_tensor_list = [torch.narrow(tensor, dim, length * i, length).contiguous() for i in range(world_size)] group = process_group dist.all_to_all(output_tensor_list, input_tensor_list, group) output = torch.cat(tuple(output_tensor_list), comm_spec.gather_dim).contiguous() return output def _all_reduce(tensor: torch.Tensor, comm_spec: CommSpec, async_op: bool = False): """ Implement all reduce operation on device mesh based on information provided by comm_spec. """ process_group = comm_spec.process_group_dict[comm_spec.logical_process_axis] if not tensor.is_contiguous(): tensor = tensor.contiguous() dist.all_reduce(tensor, op=ReduceOp.SUM, group=process_group, async_op=async_op) return tensor class _ReduceGrad(torch.autograd.Function): """ A customized communication operation which forward is an identity operation, backward is all_reduce operation. Args: input_: input matrix. comm_spec: comm_spec will give information like process group, rank list, etc. """ @staticmethod def symbolic(graph, input_): return input_ @staticmethod def forward(ctx, input_, comm_spec): ctx.comm_spec = comm_spec return input_ @staticmethod def backward(ctx, grad_output): return _all_reduce(grad_output, ctx.comm_spec), None class _ReduceInput(torch.autograd.Function): """ A customized communication operation which forward is all_reduce operation, backward is an identity operation. Args: input_: input matrix. comm_spec: comm_spec will give information like process group, rank list, etc. """ @staticmethod def symbolic(graph, input_): return _all_reduce(input_) @staticmethod def forward(ctx, input_, comm_spec): return _all_reduce(input_, comm_spec) @staticmethod def backward(ctx, grad_output): return grad_output, None class _SplitForwardGatherBackward(torch.autograd.Function): """ A customized communication operation which forward is split operation, backward is an all gather operation. Args: input_: input matrix. comm_spec: comm_spec will give information like process group, rank list, etc. """ @staticmethod def symbolic(graph, input_): return _split(input_) @staticmethod def forward(ctx, input_, comm_spec): ctx.comm_spec = comm_spec return _split(input_, comm_spec) @staticmethod def backward(ctx, grad_output): return _all_gather(grad_output, ctx.comm_spec), None class _GatherForwardSplitBackward(torch.autograd.Function): """ A customized communication operation which forward is an all gather operation, backward is split operation. Args: input_: input matrix. comm_spec: comm_spec will give information like process group, rank list, etc. """ @staticmethod def symbolic(graph, input_): return _all_gather(input_) @staticmethod def forward(ctx, input_, comm_spec): ctx.comm_spec = comm_spec return _all_gather(input_, comm_spec) @staticmethod def backward(ctx, grad_output): return _split(grad_output, ctx.comm_spec), None class _AllToAll(torch.autograd.Function): """ A customized communication operation which forward is an all to all operation, backward is an all to all operation. Args: input_: input matrix. comm_spec: comm_spec will give information like process group, rank list, etc. """ @staticmethod def symbolic(graph, input_): return _all_to_all(input_) @staticmethod def forward(ctx, input_, comm_spec): output = _all_to_all(input_, comm_spec) comm_spec_for_backward = CommSpec( comm_pattern=comm_spec.comm_pattern, process_group_dict=comm_spec.process_group_dict, gather_dim=comm_spec.shard_dim, shard_dim=comm_spec.gather_dim, logical_process_axis=comm_spec.logical_process_axis, ) ctx.comm_spec = comm_spec_for_backward return output @staticmethod def backward(ctx, grad_outputs): return _all_to_all(grad_outputs, ctx.comm_spec), None def reduce_grad(input_, comm_spec): return _ReduceGrad.apply(input_, comm_spec) def reduce_input(input_, comm_spec): return _ReduceInput.apply(input_, comm_spec) def split_forward_gather_backward(input_, comm_spec): return _SplitForwardGatherBackward.apply(input_, comm_spec) def gather_forward_split_backward(input_, comm_spec): return _GatherForwardSplitBackward.apply(input_, comm_spec) def all_to_all(input_, comm_spec): return _AllToAll.apply(input_, comm_spec) pattern_to_func_dict = { CollectiveCommPattern.GATHER_FWD_SPLIT_BWD: gather_forward_split_backward, CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD: all_to_all, CollectiveCommPattern.SPLIT_FWD_GATHER_BWD: split_forward_gather_backward, CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD: reduce_input, CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD: reduce_grad, }