#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch.distributed as dist from colossalai.legacy.global_variables import tensor_parallel_env as env from colossalai.legacy.registry import DIST_GROUP_INITIALIZER from ..parallel_mode import ParallelMode from .process_group_initializer import ProcessGroupInitializer @DIST_GROUP_INITIALIZER.register_module class Initializer_1D(ProcessGroupInitializer): """A ProcessGroupInitializer for 1d tensor parallelism. Args: rank (int): The rank of current process. world_size (int): Size of whole communication world. config (Config): Running configuration. data_parallel_size (int): Size of data parallel. pipeline_parallel_size (int): Size of pipeline parallel. tensor_parallel_size (int): Size of tensor parallel. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.num_group = self.world_size // self.tensor_parallel_size def init_dist_group(self): """Initialize 1D tensor parallel groups, and assign local_ranks and groups to each gpu. Returns: Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode): 1D tensor parallelism's information in a tuple. """ local_rank = None ranks_in_group = None process_group = None cpu_group = None group_world_size = None mode = ParallelMode.PARALLEL_1D env.parallel_input_1d = False for i in range(self.num_group): ranks = [i * self.tensor_parallel_size + j for j in range(self.tensor_parallel_size)] group = dist.new_group(ranks) group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group if self.rank in ranks: local_rank = ranks.index(self.rank) group_world_size = len(ranks) process_group = group cpu_group = group_cpu ranks_in_group = ranks return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode