from typing import Dict, List, Union import torch from transformers.configuration_utils import PretrainedConfig from transformers.generation import GenerationConfig from colossalai.inference.batch_bucket import BatchBucket from colossalai.inference.config import InferenceConfig from colossalai.inference.flash_decoding_utils import FDIntermTensors from colossalai.inference.kv_cache import KVCacheManager, RPCKVCacheManager from colossalai.inference.struct import RequestStatus, Sequence from colossalai.logging import get_dist_logger logger = get_dist_logger(__name__) __all__ = ["RunningList", "RequestHandler"] class RunningList: """ RunningList is an structure for recording the running sequences, contains prefill and decoding list. Prefilling samples will be hold until the actual ratio of prefill samples versus decoding samples exceeds ratio. Args: prefill_ratio: (float) A ratio for determing whether to perform prefill or not. _prefill (OrderedDict[Sequence]): Mapping of sequence uid -> Sequence. _decoding (OrderedDict[Sequence]): Mapping of sequence uid -> Sequence. """ def __init__(self, prefill_ratio: int, prefill: List[Sequence] = None) -> None: self.prefill_ratio = prefill_ratio self._decoding: Dict[int, Sequence] = dict() self._prefill: Dict[int, Sequence] = ( dict({seq.request_id: seq for seq in self._prefill}) if prefill is not None else dict() ) @property def decoding(self): return list(self._decoding.values()) @property def prefill(self): return list(self._prefill.values()) @property def prefill_seq_num(self): return len(self._prefill) @property def decoding_seq_num(self): return len(self._decoding) @property def total_seq_num(self): return self.prefill_seq_num + self.decoding_seq_num def append(self, seq: Sequence): assert (seq.request_id not in self._prefill) and ( seq.request_id not in self._decoding ), f"Sequence uid {seq.request_id} already exists." self._prefill[seq.request_id] = seq def extend(self, seqs: List[Sequence]): for seq in seqs: self._prefill[seq.request_id] = seq def find_seq(self, request_id) -> Union[Sequence, None]: seq = None if request_id in self._decoding: seq = self._decoding[request_id] elif request_id in self._prefill: seq = self._prefill[request_id] return seq def remove(self, seq: Sequence) -> None: if seq.request_id in self._decoding: self._decoding.pop(seq.request_id) elif seq.request_id in self._prefill: self._prefill.pop(seq.request_id) else: raise ValueError(f"Sequence {seq.request_id} is not in running list") def ready_for_prefill(self): if not self._decoding: return len(self._prefill) > 0 return len(self._prefill) / len(self._decoding) >= self.prefill_ratio def is_empty(self): return not self._decoding and not self._prefill def mark_prefill_running(self) -> None: for seq_id in self._prefill: self._prefill[seq_id].mark_running() def move_prefill_to_decoding(self, seq_ids: List[int]) -> None: for seq_id in seq_ids: assert seq_id in self._prefill, f"Sequence {seq_id} is not in prefill list" self._decoding[seq_id] = self._prefill.pop(seq_id) class RequestHandler: """ RequestHandler is the core for handling existing requests and updating current batch. During generation process, we call schedule function each iteration to update current batch. Args: inference_config: Configuration for initialize and manage kv cache. model_config: Configuration for model dtype (torch.dtype): The data type for weights and activations. """ def __init__(self, inference_config: InferenceConfig, model_config: PretrainedConfig) -> None: self.inference_config = inference_config self.running_list: RunningList = RunningList(inference_config.prefill_ratio) self.waiting_list: List[List] = [[], [], []] self.done_list: List[Sequence] = [] self.dtype = inference_config.dtype self.max_batch_size = inference_config.max_batch_size # initialize cache self._init_cache(model_config) # initialize batch device = torch.cuda.current_device() kv_max_split_num = ( inference_config.max_input_len + inference_config.max_output_len + inference_config.block_size - 1 ) // inference_config.block_size head_dim = model_config.hidden_size // model_config.num_attention_heads fd_inter_tensor = FDIntermTensors() if fd_inter_tensor._tensors_initialized: fd_inter_tensor._reset() # For Spec-Dec, process the speculated tokens plus the token in the last step for each seq max_n_tokens = self.max_batch_size max_n_tokens *= self.inference_config.max_n_spec_tokens + 1 fd_inter_tensor.initialize( max_batch_size=max_n_tokens, num_attn_heads=model_config.num_attention_heads // inference_config.tp_size, kv_max_split_num=kv_max_split_num, head_dim=head_dim, dtype=self.dtype, device=device, ) # TODO In the continuous batching scenario, the batch size may be greater than max_batch_size, # which may cause bugs and this issue should be fixed later. self.running_bb = BatchBucket( num_heads=model_config.num_attention_heads // inference_config.tp_size, head_dim=head_dim, max_batch_size=self.max_batch_size, max_length=inference_config.max_input_len + inference_config.max_output_len, block_size=inference_config.block_size, kv_max_split_num=kv_max_split_num, fd_interm_tensor=fd_inter_tensor, dtype=self.dtype, device=device, ) self.prefill_bb = BatchBucket( num_heads=model_config.num_attention_heads // inference_config.tp_size, head_dim=head_dim, max_batch_size=self.max_batch_size, max_length=inference_config.max_input_len + inference_config.max_output_len, block_size=inference_config.block_size, kv_max_split_num=kv_max_split_num, fd_interm_tensor=fd_inter_tensor, dtype=self.dtype, device=device, ) def _init_cache(self, model_config): self.cache_manager = KVCacheManager(self.inference_config, model_config) def _has_waiting(self) -> bool: return any(lst for lst in self.waiting_list) def get_kvcache(self): return self.cache_manager.get_kv_cache() def set_spec_dec_mode(self, n_spec_tokens: int): self.prefill_bb.set_use_spec_dec(n_spec_tokens) self.running_bb.set_use_spec_dec(n_spec_tokens) def unset_spec_dec_mode(self): self.prefill_bb.reset_use_spec_dec() self.running_bb.reset_use_spec_dec() def schedule(self): """ The main logic of request handler. """ if self._has_waiting(): # Try to allocate cache blocks for the sequence using a priority of prompt length. for lst in reversed(self.waiting_list): if lst: remove_list = [] for seq in lst: if seq.input_len > self.inference_config.max_input_len: # If the prompt length is longer than max_input_len, abort the sequence. logger.warning( f"the prompt(Request id = {seq.request_id}) length is longer than max_input_len, abort this sequence." ) self.abort_sequence(seq.request_id) remove_list.append(seq) break num_seqs_to_add = min(len(lst), self.max_batch_size - self.running_list.total_seq_num) # for now the recycle logic is not working remove_list.extend(lst[:num_seqs_to_add]) self.running_list.extend(lst[:num_seqs_to_add]) for seq in remove_list: lst.remove(seq) if self.running_list.ready_for_prefill(): num_seqs_to_add = min(self.running_list.prefill_seq_num, self.prefill_bb.available_batch_size) # overwrite the number of sequences to add to 1 if use_spec_dec is enabled # TODO (zhaoyuanheng): support speculative decoding for batch size > 1 if self.prefill_bb.use_spec_dec: num_seqs_to_add = 1 for seq in self.running_list.prefill[:num_seqs_to_add]: seq.mark_running() # allocate blocks for the prefill batch self.prefill_bb.add_seqs( self.running_list.prefill[:num_seqs_to_add], alloc_block_tables_fn=self.cache_manager.allocate_context_from_block_tables, ) return self.prefill_bb if not self.running_bb.is_empty: seqs_ids_to_recycle = self.cache_manager.allocate_tokens_from_block_tables( self.running_bb.block_tables, self.running_bb.seq_lengths, self.running_bb.current_batch_size ) if seqs_ids_to_recycle: seqs_to_recycle = self.running_bb.pop_seqs(seqs_ids_to_recycle) for seq in seqs_to_recycle: seq.recycle() self.running_list.remove(seq) self.waiting_list[-1].append(seq) # the recycled sequences are handled with highest priority. return self.running_bb def allocate_batch_spec_dec(self, batch: BatchBucket, n: int): assert batch.use_spec_dec if n > 0: self.cache_manager.allocate_n_tokens_from_block_tables( batch.block_tables, batch.seq_lengths, batch.current_batch_size, n=n ) def add_sequence(self, req: Sequence): """ Add the request to waiting list. """ assert not self._find_sequence(req.request_id), f"Sequence {req.request_id} already exists." assert ( req.input_len <= self.inference_config.max_input_len ), f"Sequence {req.request_id} exceeds input length limit" self.waiting_list[req.input_len * 3 // (self.inference_config.max_input_len + 1)].append(req) def abort_sequence(self, request_id: int): """ Abort the request. """ result = self._find_sequence(request_id) if result is not None: seq, priority = result if seq.status == RequestStatus.WAITING: seq.mark_aborted() self.waiting_list[priority].remove(seq) elif seq.status.is_running(): self.running_bb.pop_seq_update_batch(seq.request_id, self.cache_manager.free_block_table) self.running_list.remove(seq) else: try: self.done_list.remove(seq) except: return return def _find_sequence(self, request_id: int) -> Sequence: """ Find the request by request_id. """ for priority, lst in enumerate(self.waiting_list): for seq in lst: if seq.request_id == request_id: return seq, priority if self.running_list.find_seq(request_id): return seq, None return None def update_seq_finished(self, sequence: Sequence, generation_config: GenerationConfig): if ( sequence.output_token_id[-1] == generation_config.eos_token_id or sequence.output_len >= generation_config.max_length ): sequence.mark_finished() def update_batch_finished(self, batch: BatchBucket, generation_config: GenerationConfig): for seq in batch.seqs_li: max_length = generation_config.max_length max_new_tokens = generation_config.max_new_tokens if max_length is not None: max_new_tokens = max_length - seq.input_len if seq.output_token_id[-1] == generation_config.eos_token_id or seq.output_len >= max_new_tokens: seq.mark_finished() def check_unfinished_seqs(self) -> bool: return self._has_waiting() or not self.running_list.is_empty() def total_requests_in_batch_bucket(self) -> int: return self.prefill_bb.current_batch_size + self.running_bb.current_batch_size def append_next_tokens(self, sample_tokens: torch.Tensor): assert sample_tokens.dim() == 1 n_elements = sample_tokens.size(0) if not self.prefill_bb.is_empty: assert ( self.prefill_bb.current_batch_size == n_elements ), f"Incompatible size: {n_elements} tokens to append while prefill batch size {self.prefill_bb.current_batch_size}" self.prefill_bb.append_batch_tokens(sample_tokens) else: assert ( self.running_bb.current_batch_size == n_elements ), f"Incompatible size: {n_elements} tokens to append while running batch size {self.running_bb.current_batch_size}" self.running_bb.append_batch_tokens(sample_tokens) def update(self): """ Update current running list and done list """ if not self.prefill_bb.is_empty: self.running_list.move_prefill_to_decoding(self.prefill_bb.seqs_ids) self.running_bb.merge(self.prefill_bb) # clear the prefill batch without assigning a free_block_tables_fn # since we want to reuse the memory recorded on the block tables self.prefill_bb.clear(free_block_tables_fn=None) finished_seqs, _ = self.running_bb.pop_finished(self.cache_manager.free_block_table) for seq in finished_seqs: self.running_list.remove(seq) self.done_list.extend(finished_seqs) return finished_seqs class RPCRequestHandler(RequestHandler): """ RPC Version of request handler """ def __init__(self, inference_config: InferenceConfig, model_config: PretrainedConfig) -> None: self.inference_config = inference_config self.running_list: RunningList = RunningList(inference_config.prefill_ratio) self.waiting_list: List[List] = [[], [], []] self.done_list: List[Sequence] = [] self.dtype = inference_config.dtype self.max_batch_size = inference_config.max_batch_size # initialize cache self._init_cache(model_config) # initialize batch torch.cuda.current_device() kv_max_split_num = ( inference_config.max_input_len + inference_config.max_output_len + inference_config.block_size - 1 ) // inference_config.block_size head_dim = model_config.hidden_size // model_config.num_attention_heads # TODO In the continuous batching scenario, the batch size may be greater than max_batch_size, # which may cause bugs and this issue should be fixed later. self.running_bb = BatchBucket( num_heads=model_config.num_attention_heads // inference_config.tp_size, head_dim=head_dim, max_batch_size=self.max_batch_size, max_length=inference_config.max_input_len + inference_config.max_output_len, block_size=inference_config.block_size, kv_max_split_num=kv_max_split_num, fd_interm_tensor=None, dtype=self.dtype, ) self.prefill_bb = BatchBucket( num_heads=model_config.num_attention_heads // inference_config.tp_size, head_dim=head_dim, max_batch_size=self.max_batch_size, max_length=inference_config.max_input_len + inference_config.max_output_len, block_size=inference_config.block_size, kv_max_split_num=kv_max_split_num, fd_interm_tensor=None, dtype=self.dtype, ) def _init_cache(self, model_config): self.cache_manager = RPCKVCacheManager(self.inference_config, model_config)