"""make variations of input image""" import argparse, os import PIL import torch import numpy as np from omegaconf import OmegaConf from PIL import Image from tqdm import tqdm, trange from itertools import islice from einops import rearrange, repeat from torchvision.utils import make_grid from torch import autocast from contextlib import nullcontext try: from lightning.pytorch import seed_everything except: from pytorch_lightning import seed_everything from imwatermark import WatermarkEncoder from scripts.txt2img import put_watermark from ldm.util import instantiate_from_config from ldm.models.diffusion.ddim import DDIMSampler from utils import replace_module, getModelSize def chunk(it, size): it = iter(it) return iter(lambda: tuple(islice(it, size)), ()) def load_model_from_config(config, ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) model.eval() return model def load_img(path): image = Image.open(path).convert("RGB") w, h = image.size print(f"loaded input image of size ({w}, {h}) from {path}") w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64 image = image.resize((w, h), resample=PIL.Image.LANCZOS) image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) return 2. * image - 1. def main(): parser = argparse.ArgumentParser() parser.add_argument( "--prompt", type=str, nargs="?", default="a painting of a virus monster playing guitar", help="the prompt to render" ) parser.add_argument( "--init-img", type=str, nargs="?", help="path to the input image" ) parser.add_argument( "--outdir", type=str, nargs="?", help="dir to write results to", default="outputs/img2img-samples" ) parser.add_argument( "--ddim_steps", type=int, default=50, help="number of ddim sampling steps", ) parser.add_argument( "--fixed_code", action='store_true', help="if enabled, uses the same starting code across all samples ", ) parser.add_argument( "--ddim_eta", type=float, default=0.0, help="ddim eta (eta=0.0 corresponds to deterministic sampling", ) parser.add_argument( "--n_iter", type=int, default=1, help="sample this often", ) parser.add_argument( "--C", type=int, default=4, help="latent channels", ) parser.add_argument( "--f", type=int, default=8, help="downsampling factor, most often 8 or 16", ) parser.add_argument( "--n_samples", type=int, default=2, help="how many samples to produce for each given prompt. A.k.a batch size", ) parser.add_argument( "--n_rows", type=int, default=0, help="rows in the grid (default: n_samples)", ) parser.add_argument( "--scale", type=float, default=9.0, help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", ) parser.add_argument( "--strength", type=float, default=0.8, help="strength for noising/unnoising. 1.0 corresponds to full destruction of information in init image", ) parser.add_argument( "--from-file", type=str, help="if specified, load prompts from this file", ) parser.add_argument( "--config", type=str, default="configs/stable-diffusion/v2-inference.yaml", help="path to config which constructs model", ) parser.add_argument( "--ckpt", type=str, help="path to checkpoint of model", ) parser.add_argument( "--seed", type=int, default=42, help="the seed (for reproducible sampling)", ) parser.add_argument( "--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast" ) parser.add_argument( "--use_int8", type=bool, default=False, help="use int8 for inference", ) opt = parser.parse_args() seed_everything(opt.seed) config = OmegaConf.load(f"{opt.config}") model = load_model_from_config(config, f"{opt.ckpt}") device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model = model.to(device) # quantize model if opt.use_int8: model = replace_module(model) # # to compute the model size # getModelSize(model) sampler = DDIMSampler(model) os.makedirs(opt.outdir, exist_ok=True) outpath = opt.outdir print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") wm = "SDV2" wm_encoder = WatermarkEncoder() wm_encoder.set_watermark('bytes', wm.encode('utf-8')) batch_size = opt.n_samples n_rows = opt.n_rows if opt.n_rows > 0 else batch_size if not opt.from_file: prompt = opt.prompt assert prompt is not None data = [batch_size * [prompt]] else: print(f"reading prompts from {opt.from_file}") with open(opt.from_file, "r") as f: data = f.read().splitlines() data = list(chunk(data, batch_size)) sample_path = os.path.join(outpath, "samples") os.makedirs(sample_path, exist_ok=True) base_count = len(os.listdir(sample_path)) grid_count = len(os.listdir(outpath)) - 1 assert os.path.isfile(opt.init_img) init_image = load_img(opt.init_img).to(device) init_image = repeat(init_image, '1 ... -> b ...', b=batch_size) init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space sampler.make_schedule(ddim_num_steps=opt.ddim_steps, ddim_eta=opt.ddim_eta, verbose=False) assert 0. <= opt.strength <= 1., 'can only work with strength in [0.0, 1.0]' t_enc = int(opt.strength * opt.ddim_steps) print(f"target t_enc is {t_enc} steps") precision_scope = autocast if opt.precision == "autocast" else nullcontext with torch.no_grad(): with precision_scope("cuda"): with model.ema_scope(): all_samples = list() for n in trange(opt.n_iter, desc="Sampling"): for prompts in tqdm(data, desc="data"): uc = None if opt.scale != 1.0: uc = model.get_learned_conditioning(batch_size * [""]) if isinstance(prompts, tuple): prompts = list(prompts) c = model.get_learned_conditioning(prompts) # encode (scaled latent) z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc] * batch_size).to(device)) # decode it samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=opt.scale, unconditional_conditioning=uc, ) x_samples = model.decode_first_stage(samples) x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0) for x_sample in x_samples: x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') img = Image.fromarray(x_sample.astype(np.uint8)) img = put_watermark(img, wm_encoder) img.save(os.path.join(sample_path, f"{base_count:05}.png")) base_count += 1 all_samples.append(x_samples) # additionally, save as grid grid = torch.stack(all_samples, 0) grid = rearrange(grid, 'n b c h w -> (n b) c h w') grid = make_grid(grid, nrow=n_rows) # to image grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() grid = Image.fromarray(grid.astype(np.uint8)) grid = put_watermark(grid, wm_encoder) grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png')) grid_count += 1 print(f"Your samples are ready and waiting for you here: \n{outpath} \nEnjoy.") if __name__ == "__main__": main() # # to compute the mem allocated # print(torch.cuda.max_memory_allocated() / 1024 / 1024)