import math import torch from ...registry import meta_patched_module @meta_patched_module.register(torch.nn.AvgPool1d) def torch_nn_avgpool1d(self, input): num_dim = input.dim() assert num_dim in [2, 3], f"expected the input to have 2 or 3 dimensions, but got {num_dim} dimensions" l_in = input.shape[-1] def _convert_int_to_list(item): if isinstance(item, int): return [item] * 1 else: return item padding = _convert_int_to_list(self.padding) kernel_size = _convert_int_to_list(self.kernel_size) stride = _convert_int_to_list(self.stride) l_out = math.floor((l_in + 2 * padding[0] - kernel_size[0]) / stride[0] + 1) result_shape = tuple(input.shape[:-1]) + (l_out,) return torch.empty(result_shape, device="meta") @meta_patched_module.register(torch.nn.AvgPool2d) def torch_nn_avgpool2d(self, input): num_dim = input.dim() assert num_dim in [3, 4], f"expected the input to have 3 or 4 dimensions, but got {num_dim} dimensions" h_in, w_in = input.shape[-2:] def _convert_int_to_list(item): if isinstance(item, int): return [item] * 2 else: return item padding = _convert_int_to_list(self.padding) kernel_size = _convert_int_to_list(self.kernel_size) stride = _convert_int_to_list(self.stride) h_out = math.floor((h_in + 2 * padding[0] - kernel_size[0]) / stride[0] + 1) w_out = math.floor((w_in + 2 * padding[1] - kernel_size[1]) / stride[1] + 1) result_shape = tuple(input.shape[:-2]) + ( h_out, w_out, ) return torch.empty(result_shape, device="meta") @meta_patched_module.register(torch.nn.AvgPool3d) def torch_nn_avgpool3d(self, input): num_dim = input.dim() assert num_dim in [4, 5], f"expected the input to have 4 or 5 dimensions, but got {num_dim} dimensions" d_in, h_in, w_in = input.shape[-3:] def _convert_int_to_list(item): if isinstance(item, int): return [item] * 3 else: return item padding = _convert_int_to_list(self.padding) kernel_size = _convert_int_to_list(self.kernel_size) stride = _convert_int_to_list(self.stride) d_out = math.floor((d_in + 2 * padding[0] - kernel_size[0]) / stride[0] + 1) h_out = math.floor((h_in + 2 * padding[1] - kernel_size[1]) / stride[1] + 1) w_out = math.floor((w_in + 2 * padding[2] - kernel_size[2]) / stride[2] + 1) result_shape = tuple(input.shape[:-3]) + ( d_out, h_out, w_out, ) return torch.empty(result_shape, device="meta") @meta_patched_module.register(torch.nn.MaxPool1d) def torch_nn_maxpool1d(self, input): num_dim = input.dim() assert num_dim in [2, 3], f"expected the input to have 2 or 3 dimensions, but got {num_dim} dimensions" l_in = input.shape[-1] def _convert_int_to_list(item): if isinstance(item, int): return [item] * 1 else: return item padding = _convert_int_to_list(self.padding) dilation = _convert_int_to_list(self.dilation) kernel_size = _convert_int_to_list(self.kernel_size) stride = _convert_int_to_list(self.stride) l_out = math.floor((l_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1) result_shape = tuple(input.shape[:-1]) + (l_out,) return torch.empty(result_shape, device="meta") @meta_patched_module.register(torch.nn.MaxPool2d) def torch_nn_maxpool2d(self, input): num_dim = input.dim() assert num_dim in [3, 4], f"expected the input to have 3 or 4 dimensions, but got {num_dim} dimensions" h_in, w_in = input.shape[-2:] def _convert_int_to_list(item): if isinstance(item, int): return [item] * 2 else: return item padding = _convert_int_to_list(self.padding) dilation = _convert_int_to_list(self.dilation) kernel_size = _convert_int_to_list(self.kernel_size) stride = _convert_int_to_list(self.stride) h_out = math.floor((h_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1) w_out = math.floor((w_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1) result_shape = tuple(input.shape[:-2]) + ( h_out, w_out, ) return torch.empty(result_shape, device="meta") @meta_patched_module.register(torch.nn.MaxPool3d) def torch_nn_maxpool3d(self, input): num_dim = input.dim() assert num_dim in [4, 5], f"expected the input to have 4 or 5 dimensions, but got {num_dim} dimensions" d_in, h_in, w_in = input.shape[-3:] def _convert_int_to_list(item): if isinstance(item, int): return [item] * 3 else: return item padding = _convert_int_to_list(self.padding) dilation = _convert_int_to_list(self.dilation) kernel_size = _convert_int_to_list(self.kernel_size) stride = _convert_int_to_list(self.stride) d_out = math.floor((d_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1) h_out = math.floor((h_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1) w_out = math.floor((w_in + 2 * padding[2] - dilation[2] * (kernel_size[2] - 1) - 1) / stride[2] + 1) result_shape = tuple(input.shape[:-3]) + ( d_out, h_out, w_out, ) return torch.empty(result_shape, device="meta") @meta_patched_module.register(torch.nn.AdaptiveAvgPool1d) @meta_patched_module.register(torch.nn.AdaptiveMaxPool1d) def torch_nn_adapative_pooling_1d(self, input): assert input.dim() in [2, 3] if isinstance(self.output_size, int): output_size = (self.output_size,) else: output_size = self.output_size result_shape = tuple(input.shape[:-1]) + output_size return torch.empty(result_shape, device="meta") @meta_patched_module.register(torch.nn.AdaptiveAvgPool2d) @meta_patched_module.register(torch.nn.AdaptiveMaxPool2d) def torch_nn_adapative_pooling_2d(self, input): assert input.dim() in [3, 4] if isinstance(self.output_size, int): output_size = (self.output_size,) * 2 else: output_size = self.output_size result_shape = tuple(input.shape[:-2]) + output_size return torch.empty(result_shape, device="meta") @meta_patched_module.register(torch.nn.AdaptiveAvgPool3d) @meta_patched_module.register(torch.nn.AdaptiveMaxPool3d) def torch_nn_adapative_pooling_3d(self, input): assert input.dim() in [4, 5] if isinstance(self.output_size, int): output_size = (self.output_size,) * 3 else: output_size = self.output_size result_shape = tuple(input.shape[:-3]) + output_size return torch.empty(result_shape, device="meta")