# Inference We provide an online inference server and a benchmark. We aim to run inference on single GPU, so quantization is essential when using large models. We support 8-bit quantization (RTN), which is powered by [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) and [transformers](https://github.com/huggingface/transformers). And 4-bit quantization (GPTQ), which is powered by [gptq](https://github.com/IST-DASLab/gptq) and [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa). We also support FP16 inference. We only support LLaMA family models now. ## Choosing precision (quantization) **FP16**: Fastest, best output quality, highest memory usage **8-bit**: Slow, easier setup (originally supported by transformers), lower output quality (due to RTN), **recommended for first-timers** **4-bit**: Faster, lowest memory usage, higher output quality (due to GPTQ), but more difficult setup ## Hardware requirements for LLaMA Tha data is from [LLaMA Int8 4bit ChatBot Guide v2](https://rentry.org/llama-tard-v2). ### 8-bit | Model | Min GPU RAM | Recommended GPU RAM | Min RAM/Swap | Card examples | | :-------: | :---------: | :-----------------: | :----------: | :--------------------------------: | | LLaMA-7B | 9.2GB | 10GB | 24GB | 3060 12GB, RTX 3080 10GB, RTX 3090 | | LLaMA-13B | 16.3GB | 20GB | 32GB | RTX 3090 Ti, RTX 4090 | | LLaMA-30B | 36GB | 40GB | 64GB | A6000 48GB, A100 40GB | | LLaMA-65B | 74GB | 80GB | 128GB | A100 80GB | ### 4-bit | Model | Min GPU RAM | Recommended GPU RAM | Min RAM/Swap | Card examples | | :-------: | :---------: | :-----------------: | :----------: | :--------------------------------------------------------: | | LLaMA-7B | 3.5GB | 6GB | 16GB | RTX 1660, 2060, AMD 5700xt, RTX 3050, 3060 | | LLaMA-13B | 6.5GB | 10GB | 32GB | AMD 6900xt, RTX 2060 12GB, 3060 12GB, 3080, A2000 | | LLaMA-30B | 15.8GB | 20GB | 64GB | RTX 3080 20GB, A4500, A5000, 3090, 4090, 6000, Tesla V100 | | LLaMA-65B | 31.2GB | 40GB | 128GB | A100 40GB, 2x3090, 2x4090, A40, RTX A6000, 8000, Titan Ada | ## General setup ```shell pip install -r requirements.txt ``` ## 8-bit setup 8-bit quantization is originally supported by the latest [transformers](https://github.com/huggingface/transformers). Please install it from source. Please ensure you have downloaded HF-format model weights of LLaMA models. Usage: ```python import torch from transformers import LlamaForCausalLM USE_8BIT = True # use 8-bit quantization; otherwise, use fp16 model = LlamaForCausalLM.from_pretrained( "pretrained/path", load_in_8bit=USE_8BIT, torch_dtype=torch.float16, device_map="auto", ) if not USE_8BIT: model.half() # use fp16 model.eval() ``` **Troubleshooting**: if you get error indicating your CUDA-related libraries not found when loading 8-bit model, you can check whether your `LD_LIBRARY_PATH` is correct. E.g. you can set `export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH`. ## 4-bit setup Please ensure you have downloaded HF-format model weights of LLaMA models first. Then you can follow [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa). This lib provides efficient CUDA kernels and weight conversion script. After installing this lib, we may convert the original HF-format LLaMA model weights to 4-bit version. ```shell CUDA_VISIBLE_DEVICES=0 python llama.py /path/to/pretrained/llama-7b c4 --wbits 4 --groupsize 128 --save llama7b-4bit.pt ``` Run this command in your cloned `GPTQ-for-LLaMa` directory, then you will get a 4-bit weight file `llama7b-4bit-128g.pt`. **Troubleshooting**: if you get error about `position_ids`, you can checkout to commit `50287c3b9ae4a3b66f6b5127c643ec39b769b155`(`GPTQ-for-LLaMa` repo). ## Online inference server In this directory: ```shell export CUDA_VISIBLE_DEVICES=0 # fp16, will listen on 0.0.0.0:7070 by default python server.py /path/to/pretrained # 8-bit, will listen on localhost:8080 python server.py /path/to/pretrained --quant 8bit --http_host localhost --http_port 8080 # 4-bit python server.py /path/to/pretrained --quant 4bit --gptq_checkpoint /path/to/llama7b-4bit-128g.pt --gptq_group_size 128 ``` ## Benchmark In this directory: ```shell export CUDA_VISIBLE_DEVICES=0 # fp16 python benchmark.py /path/to/pretrained # 8-bit python benchmark.py /path/to/pretrained --quant 8bit # 4-bit python benchmark.py /path/to/pretrained --quant 4bit --gptq_checkpoint /path/to/llama7b-4bit-128g.pt --gptq_group_size 128 ``` This benchmark will record throughput and peak CUDA memory usage.