import pytest import torch from packaging import version try: pass from colossalai.kernel.triton.token_attention_kernel import token_attention_fwd HAS_TRITON = True except ImportError: HAS_TRITON = False print("please install triton from https://github.com/openai/triton") TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4") def torch_att(xq, xk, xv, bs, seqlen, num_head, head_dim): xq = xq.view(bs, 1, num_head, head_dim) xk = xk.view(bs, seqlen, num_head, head_dim) xv = xv.view(bs, seqlen, num_head, head_dim) logics = torch.sum(xq * xk, dim=3, keepdim=False) * 1 / (head_dim**0.5) prob = torch.softmax(logics, dim=1) prob = prob.view(bs, seqlen, num_head, 1) return torch.sum(prob * xv, dim=1, keepdim=False) @pytest.mark.skipif( not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4" ) def test(): Z, head_num, seq_len, head_dim = 22, 112 // 8, 2048, 128 dtype = torch.float16 q = torch.empty((Z, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.1, std=0.2) k = torch.empty((Z * seq_len, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.4, std=0.2) v = torch.empty((Z * seq_len, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.3, std=0.2) o = torch.empty((Z, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.3, std=0.2) alibi = torch.zeros((head_num,), dtype=torch.float32, device="cuda") max_kv_cache_len = seq_len kv_cache_start_loc = torch.zeros((Z,), dtype=torch.int32, device="cuda") kv_cache_loc = torch.zeros((Z, seq_len), dtype=torch.int32, device="cuda") kv_cache_seq_len = torch.ones((Z,), dtype=torch.int32, device="cuda") kv_cache_seq_len[:] = seq_len kv_cache_start_loc[0] = 0 kv_cache_start_loc[1] = seq_len kv_cache_start_loc[2] = 2 * seq_len kv_cache_start_loc[3] = 3 * seq_len for i in range(Z): kv_cache_loc[i, :] = torch.arange(i * seq_len, (i + 1) * seq_len, dtype=torch.int32, device="cuda") token_attention_fwd(q, k, v, o, kv_cache_loc, kv_cache_start_loc, kv_cache_seq_len, max_kv_cache_len, alibi=alibi) torch_out = torch_att(q, k, v, Z, seq_len, head_num, head_dim) print("max ", torch.max(torch.abs(torch_out - o))) print("mean ", torch.mean(torch.abs(torch_out - o))) assert torch.allclose(torch_out, o, atol=1e-2, rtol=0) if __name__ == "__main__": test()