import pytest import torch import torch.nn as nn from torch.utils.checkpoint import checkpoint from colossalai.testing import clear_cache_before_run try: from colossalai._analyzer.fx import symbolic_trace except: pass class MyModule(nn.Module): def __init__(self): super().__init__() self.a = nn.Linear(10, 10) self.b = nn.Linear(10, 10) self.c = nn.Linear(10, 10) self.d = nn.Linear(10, 10) self.e = nn.Linear(10, 10) def checkpoint_0(self, x): return checkpoint(self.checkpoint_0_0, x) + checkpoint(self.checkpoint_0_1, x) + self.e(x) def checkpoint_0_0(self, x): return checkpoint(self.checkpoint_0_0_0, x) + checkpoint(self.checkpoint_0_0_1, x) def checkpoint_0_0_0(self, x): return self.a(x) + checkpoint(self.checkpoint_0_0_0_0, x, use_reentrant=False) def checkpoint_0_0_0_0(self, x): return self.b(x) def checkpoint_0_0_1(self, x): return self.b(x) + self.c(x) def checkpoint_0_1(self, x): return self.d(x) def forward(self, x): return checkpoint(self.checkpoint_0, x) @pytest.mark.skipif(torch.__version__ < "1.12.0", reason="torch version < 12") @clear_cache_before_run() def test_nested_ckpt(): model = MyModule() x = torch.rand(10, 10) gm = symbolic_trace(model, meta_args={"x": x}, trace_act_ckpt=True) assert torch.allclose(gm(x), model(x)), "The traced model should generate the same output as the original model." for ckpt_def in filter(lambda s: s.startswith("checkpoint"), dir(model)): assert ckpt_def in gm.code, f"Checkpoint {ckpt_def} should be in the traced code.\n Traced code = {gm.code}" if __name__ == "__main__": test_nested_ckpt()