import argparse from typing import List, Union import datasets import torch import torch.distributed as dist import torch.nn as nn from data import GLUEDataBuilder from torch.optim import Optimizer from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoConfig, BertForSequenceClassification, get_linear_schedule_with_warmup import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin from colossalai.cluster import DistCoordinator from colossalai.nn.optimizer import HybridAdam from colossalai.utils import get_current_device # ============================== # Prepare Hyperparameters # ============================== NUM_EPOCHS = 1 BATCH_SIZE = 32 LEARNING_RATE = 2.4e-5 WEIGHT_DECAY = 0.01 WARMUP_FRACTION = 0.1 def move_to_cuda(batch): return {k: v.cuda() for k, v in batch.items()} @torch.no_grad() def evaluate( model: nn.Module, test_dataloader: Union[DataLoader, List[DataLoader]], num_labels: int, task_name: str, eval_splits: List[str], coordinator: DistCoordinator, ): metric = datasets.load_metric("glue", task_name, process_id=coordinator.rank, num_process=coordinator.world_size) model.eval() def evaluate_subset(dataloader: DataLoader): accum_loss = torch.zeros(1, device=get_current_device()) for batch in dataloader: batch = move_to_cuda(batch) outputs = model(**batch) val_loss, logits = outputs[:2] accum_loss.add_(val_loss) if num_labels > 1: preds = torch.argmax(logits, axis=1) elif num_labels == 1: preds = logits.squeeze() labels = batch["labels"] metric.add_batch(predictions=preds, references=labels) results = metric.compute() dist.all_reduce(accum_loss.div_(len(dataloader))) if coordinator.is_master(): results["loss"] = accum_loss.item() / coordinator.world_size return results if isinstance(test_dataloader, DataLoader): return evaluate_subset(test_dataloader) else: assert len(test_dataloader) == len(eval_splits) final_results = {} for split, sub_loader in zip(eval_splits, test_dataloader): results = evaluate_subset(sub_loader) final_results.update({f"{k}_{split}": v for k, v in results.items()}) return final_results def train_epoch( epoch: int, model: nn.Module, optimizer: Optimizer, lr_scheduler, train_dataloader: DataLoader, booster: Booster, coordinator: DistCoordinator, ): model.train() with tqdm(train_dataloader, desc=f"Epoch [{epoch + 1}/{NUM_EPOCHS}]", disable=not coordinator.is_master()) as pbar: for batch in pbar: # Forward pass batch = move_to_cuda(batch) outputs = model(**batch) loss = outputs[0] # Backward and optimize booster.backward(loss, optimizer) optimizer.step() optimizer.zero_grad() lr_scheduler.step() # Print log info pbar.set_postfix({"loss": loss.item()}) def main(): # ============================== # Parse Arguments # ============================== parser = argparse.ArgumentParser() parser.add_argument("-t", "--task", default="mrpc", help="GLUE task to run") parser.add_argument( "-p", "--plugin", type=str, default="torch_ddp", choices=["torch_ddp", "torch_ddp_fp16", "gemini", "low_level_zero"], help="plugin to use", ) parser.add_argument("--target_f1", type=float, default=None, help="target f1 score. Raise exception if not reached") args = parser.parse_args() # ============================== # Launch Distributed Environment # ============================== colossalai.launch_from_torch(config={}, seed=42) coordinator = DistCoordinator() # local_batch_size = BATCH_SIZE // coordinator.world_size lr = LEARNING_RATE * coordinator.world_size model_name = "bert-base-uncased" # ============================== # Instantiate Plugin and Booster # ============================== booster_kwargs = {} if args.plugin == "torch_ddp_fp16": booster_kwargs["mixed_precision"] = "fp16" if args.plugin.startswith("torch_ddp"): plugin = TorchDDPPlugin() elif args.plugin == "gemini": plugin = GeminiPlugin(placement_policy="static", strict_ddp_mode=True, initial_scale=2**5) elif args.plugin == "low_level_zero": plugin = LowLevelZeroPlugin(initial_scale=2**5) booster = Booster(plugin=plugin, **booster_kwargs) # ============================== # Prepare Dataloader # ============================== data_builder = GLUEDataBuilder( model_name, plugin, args.task, train_batch_size=BATCH_SIZE, eval_batch_size=BATCH_SIZE ) train_dataloader = data_builder.train_dataloader() test_dataloader = data_builder.test_dataloader() # ==================================== # Prepare model, optimizer # ==================================== # bert pretrained model config = AutoConfig.from_pretrained(model_name, num_labels=data_builder.num_labels) model = BertForSequenceClassification.from_pretrained(model_name, config=config) # optimizer no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": WEIGHT_DECAY, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer = HybridAdam(optimizer_grouped_parameters, lr=lr, eps=1e-8) # lr scheduler total_steps = len(train_dataloader) * NUM_EPOCHS num_warmup_steps = int(WARMUP_FRACTION * total_steps) lr_scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=total_steps, ) # ============================== # Boost with ColossalAI # ============================== model, optimizer, _, _, lr_scheduler = booster.boost(model, optimizer, lr_scheduler=lr_scheduler) # ============================== # Train model # ============================== for epoch in range(NUM_EPOCHS): train_epoch(epoch, model, optimizer, lr_scheduler, train_dataloader, booster, coordinator) results = evaluate( model, test_dataloader, data_builder.num_labels, args.task, data_builder.eval_splits, coordinator ) if coordinator.is_master(): print(results) if args.target_f1 is not None and "f1" in results: assert results["f1"] >= args.target_f1, f'f1 score {results["f1"]} is lower than target {args.target_f1}' if __name__ == "__main__": main()