import math import torch from ...registry import meta_patched_module @meta_patched_module.register(torch.nn.Conv1d) def torch_nn_conv1d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv1d l_in = input.shape[-1] c_out = self.out_channels l_out = math.floor( (l_in + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1 ) result_shape = input.shape[:-2] + ( c_out, l_out, ) return torch.empty(result_shape, device="meta") @meta_patched_module.register(torch.nn.Conv2d) def torch_nn_conv2d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv2d h_in, w_in = input.shape[-2:] c_out = self.out_channels h_out = math.floor( (h_in + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1 ) w_out = math.floor( (w_in + 2 * self.padding[1] - self.dilation[1] * (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1 ) result_shape = input.shape[:-3] + ( c_out, h_out, w_out, ) return torch.empty(result_shape, device="meta") @meta_patched_module.register(torch.nn.Conv3d) def torch_nn_conv3d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv3d d_in, h_in, w_in = input.shape[-3:] c_out = self.out_channels d_out = math.floor( (d_in + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1 ) h_out = math.floor( (h_in + 2 * self.padding[1] - self.dilation[1] * (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1 ) w_out = math.floor( (w_in + 2 * self.padding[2] - self.dilation[2] * (self.kernel_size[2] - 1) - 1) / self.stride[2] + 1 ) result_shape = input.shape[:-4] + ( c_out, d_out, h_out, w_out, ) return torch.empty(result_shape, device="meta") @meta_patched_module.register(torch.nn.ConvTranspose1d) def torch_nn_convtranspose1d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose1d.html l_in = input.shape[-1] c_out = self.out_channels l_out = math.floor( (l_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] * (self.kernel_size[0] - 1) + self.output_padding[0] + 1 ) result_shape = input.shape[:-2] + ( c_out, l_out, ) return torch.empty(result_shape, device="meta") @meta_patched_module.register(torch.nn.ConvTranspose2d) def torch_nn_convtranspose2d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html h_in, w_in = input.shape[-2:] c_out = self.out_channels h_out = math.floor( (h_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] * (self.kernel_size[0] - 1) + self.output_padding[0] + 1 ) w_out = math.floor( (w_in - 1) * self.stride[1] - 2 * self.padding[1] + self.dilation[1] * (self.kernel_size[1] - 1) + self.output_padding[1] + 1 ) result_shape = input.shape[:-3] + ( c_out, h_out, w_out, ) return torch.empty(result_shape, device="meta") @meta_patched_module.register(torch.nn.ConvTranspose3d) def torch_nn_convtranspose3d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose3d.html d_in, h_in, w_in = input.shape[-3:] c_out = self.out_channels d_out = math.floor( (d_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] * (self.kernel_size[0] - 1) + self.output_padding[0] + 1 ) h_out = math.floor( (h_in - 1) * self.stride[1] - 2 * self.padding[1] + self.dilation[1] * (self.kernel_size[1] - 1) + self.output_padding[1] + 1 ) w_out = math.floor( (w_in - 1) * self.stride[2] - 2 * self.padding[2] + self.dilation[2] * (self.kernel_size[2] - 1) + self.output_padding[2] + 1 ) result_shape = input.shape[:-4] + ( c_out, d_out, h_out, w_out, ) return torch.empty(result_shape, device="meta")