from torchvision.models import resnet18 from .registry import non_distributed_component_funcs from pathlib import Path import os import torch from torchvision.transforms import transforms from torchvision.datasets import CIFAR10 from colossalai.utils import get_dataloader def get_cifar10_dataloader(train): # build dataloaders dataset = CIFAR10(root=Path(os.environ['DATA']), download=True, train=train, transform=transforms.Compose( [transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])) dataloader = get_dataloader(dataset=dataset, shuffle=True, batch_size=16, drop_last=True) return dataloader @non_distributed_component_funcs.register(name='resnet18') def get_resnet_training_components(): def model_builder(checkpoint=False): return resnet18(num_classes=10) trainloader = get_cifar10_dataloader(train=True) testloader = get_cifar10_dataloader(train=False) def optim_builder(model): return torch.optim.Adam(model.parameters(), lr=0.001) criterion = torch.nn.CrossEntropyLoss() return model_builder, trainloader, testloader, optim_builder, criterion