import torch import torch.nn as nn import torch.nn.functional as F from colossalai.nn import CheckpointModule from .utils import DummyDataGenerator from .registry import non_distributed_component_funcs class SubNet(nn.Module): def __init__(self, out_features) -> None: super().__init__() self.bias = nn.Parameter(torch.zeros(out_features)) def forward(self, x, weight): return F.linear(x, weight, self.bias) class NestedNet(CheckpointModule): def __init__(self, checkpoint=False) -> None: super().__init__(checkpoint) self.fc1 = nn.Linear(5, 5) self.sub_fc = SubNet(5) self.fc2 = nn.Linear(5, 2) def forward(self, x): x = self.fc1(x) x = self.sub_fc(x, self.fc1.weight) x = self.fc1(x) x = self.fc2(x) return x class DummyDataLoader(DummyDataGenerator): def generate(self): data = torch.rand(16, 5) label = torch.randint(low=0, high=2, size=(16,)) return data, label @non_distributed_component_funcs.register(name='nested_model') def get_training_components(): def model_builder(checkpoint): return NestedNet(checkpoint) trainloader = DummyDataLoader() testloader = DummyDataLoader() def optim_builder(model): return torch.optim.Adam(model.parameters(), lr=0.001) criterion = torch.nn.CrossEntropyLoss() return model_builder, trainloader, testloader, optim_builder, criterion