import os from typing import Any, Dict, List import gpt_evaluate import metrics import pandas as pd from utils import get_data_per_category, jdump class Evaluator(object): """ A class named Evaluator includes GPT-3.5/GPT-4 evaluation and automatic evaluation """ def __init__(self, params: Dict[str, Any], battle_prompt: Dict[str, Any], gpt_evaluation_prompt: Dict[str, Any]) -> None: self.params = params self.battle_prompt = battle_prompt self.gpt_evaluation_prompt = gpt_evaluation_prompt self.automatic_metric_stats = dict() self.gpt35_evaluation_results = dict() self.battle_results = [] def battle(self, answers1: List[Dict], answers2: List[Dict]) -> None: """ Comparison between two models using GPT-4 as the reviewer. """ self.battle_results = gpt_evaluate.battle(answers1, answers2, self.battle_prompt) def evaluate(self, answers: List[Dict], targets: List[Dict]) -> None: """ A comprehensive evaluation of the answers from the model. The function evaluates the model's performance from different perspectives using GPT-3.5, GPT-4, and off-the-shelf evaluation metrics. The metrics will be decided by the config file. """ def switch(metric): if metric == "BLEU": return metrics.bleu_score(preds=predicts_list, targets=targets_list) elif metric == "ROUGE": return metrics.rouge_cn_score(preds=predicts_list, targets=targets_list) elif (metric == "Distinct"): return metrics.distinct_score(preds=predicts_list) elif (metric == "BERTScore"): return metrics.bert_score(preds=predicts_list, targets=targets_list) elif (metric == "Precision"): return metrics.precision(preds=predicts_list, targets=targets_list) elif (metric == "Recall"): return metrics.recall(preds=predicts_list, targets=targets_list) elif (metric == "F1 score"): return metrics.F1_score(preds=predicts_list, targets=targets_list) else: raise ValueError(f"Unexpected metric") answers_per_category = get_data_per_category(answers, list(self.params.keys())) targets_per_category = get_data_per_category(targets, list(self.params.keys())) # automatic evaluation for category in self.params: category_metrics = self.params[category]["Metrics"] self.automatic_metric_stats[category] = {} targets_list = [ target["target"] if target["target"] else target["output"] for target in targets_per_category[category] ] predicts_list = [answer["output"] for answer in answers_per_category[category]] for metric in category_metrics: self.automatic_metric_stats[category].update(switch(metric=metric)) # gpt35 evaluation for category in self.params: category_metrics = self.params[category]["GPT-3.5"] prompt = self.gpt_evaluation_prompt.get(category, None) if prompt is None: print(f"No prompt for category {category}! Use prompt for category general now.") prompt = self.gpt_evaluation_prompt["general"] self.gpt35_evaluation_results[category] = gpt_evaluate.gpt35_evaluate(answers_per_category[category], prompt, category_metrics, category) def save(self, path: str, model_name_list: List[str]) -> None: """ Save evaluation results of GPT-3.5, GPT-4, and off-the-shelf evaluation metrics. """ if len(model_name_list) == 2: save_path = os.path.join(path, "gpt_evaluate", "battle_results") gpt_evaluate.save_battle_results(self.battle_results, model_name_list[0], model_name_list[1], save_path) else: # save evaluation results for automatic metrics automatic_df = pd.DataFrame(self.automatic_metric_stats) automatic_results_save_path = os.path.join(path, "automatic_results") if not os.path.exists(automatic_results_save_path): os.makedirs(automatic_results_save_path) automatic_df.to_csv(os.path.join(automatic_results_save_path, f"{model_name_list[0]}.csv"), index=True) # Save evaluation results for GPT-3.5 evaluation metrics. all_evaluations = [] base_save_path = os.path.join(path, "gpt_evaluate", "gpt35_evaluate_results") evaluation_results_save_path = os.path.join(base_save_path, "evaluation_results") for category, evaluations in self.gpt35_evaluation_results.items(): jdump( evaluations, os.path.join(evaluation_results_save_path, model_name_list[0], f"{category}_evaluation_results.json")) all_evaluations.extend(evaluations) jdump(all_evaluations, os.path.join(evaluation_results_save_path, f"{model_name_list[0]}_evaluation_results.json")) # Start to calculate scores and save statictics. evaluation_statistics_save_path = os.path.join(base_save_path, "evaluation_statistics") gpt_evaluate.save_gpt35_evaluation_statistics(model_name_list[0], all_evaluations, evaluation_statistics_save_path) # Save charts and csv. evaluation_analyses_save_path = os.path.join(base_save_path, "evaluation_analyses") gpt_evaluate.analyze_gpt35_evaluation_statistics(evaluation_statistics_save_path, evaluation_analyses_save_path)