from typing import List from torch.optim.lr_scheduler import MultiStepLR as _MultiStepLR from colossalai.registry import LR_SCHEDULERS from .delayed import WarmupScheduler @LR_SCHEDULERS.register_module class MultiStepLR(_MultiStepLR): """Decays the learning rate of each parameter group by gamma once the number of epoch reaches one of the milestones. Notice that such decay can happen simultaneously with other changes to the learning rate from outside this scheduler. When last_epoch=-1, sets initial lr as lr. :param optimizer: Wrapped optimizer :type optimizer: torch.optim.Optimizer :param total_steps: Number of total training steps :type total_steps: int :param milestones: List of epoch indices. Must be increasing, defaults to None :type milestones: List[int], optional :param gamma: Multiplicative factor of learning rate decay, defaults to 0.1 :type gamma: float, optional :param num_steps_per_epoch: Number of steps per epoch, defaults to -1 :type num_steps_per_epoch: int, optional :param last_epoch: The index of last epoch, defaults to -1 :type last_epoch: int, optional """ def __init__(self, optimizer, total_steps: int, milestones: List[int] = None, gamma: float = 0.1, last_epoch: int = -1, **kwargs): super().__init__(optimizer, milestones, gamma=gamma, last_epoch=last_epoch) @LR_SCHEDULERS.register_module class MultiStepWarmupLR(WarmupScheduler): """Multi-step laerning rate scheduler with warmup. :param optimizer: Wrapped optimizer :type optimizer: torch.optim.Optimizer :param total_steps: Number of total training steps :type total_steps: int :param warmup_steps: Number of warmup steps, defaults to 0 :type warmup_steps: int, optional :param milestones: List of epoch indices. Must be increasing, defaults to None :type milestones: List[int], optional :param gamma: Multiplicative factor of learning rate decay, defaults to 0.1 :type gamma: float, optional :param num_steps_per_epoch: Number of steps per epoch, defaults to -1 :type num_steps_per_epoch: int, optional :param last_epoch: The index of last epoch, defaults to -1 :type last_epoch: int, optional """ def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, milestones: List[int] = None, gamma: float = 0.1, last_epoch: int = -1, **kwargs): if len(milestones) == 0: raise ValueError('milestones cannot be empty') milestones = [ v - warmup_steps for v in milestones if v >= warmup_steps] base_scheduler = _MultiStepLR(optimizer, milestones=milestones, gamma=gamma) super().__init__(optimizer, warmup_steps, base_scheduler, last_epoch=last_epoch)