import torch ###### BIAS GELU FUSION/ NO AUTOGRAD ################ # 1/sqrt(2*pi)-> 0.3989423 # 1/sqrt(2) -> 0.70710678 # sqrt(2/pi) -> 0.79788456 # this function is tanh approximation of gelu # actual gelu is: # x * 0.5 * (1.0 + torch.erf(x * 0.70710678)) @torch.jit.script def bias_gelu(bias, y): x = bias + y return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))) # gradient of tanh approximation of gelu # gradient of actual gelu is: # 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x) @torch.jit.script def bias_gelu_back(g, bias, y): x = bias + y tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) return ff*g class GeLUFunction(torch.autograd.Function): @staticmethod # bias is an optional argument def forward(ctx, input, bias): ctx.save_for_backward(input, bias) return bias_gelu(bias, input) @staticmethod def backward(ctx, grad_output): input, bias = ctx.saved_tensors tmp = bias_gelu_back(grad_output, bias, input) return tmp, tmp bias_gelu_impl = GeLUFunction.apply