import copy import pytest import torch import colossalai from colossalai.amp import convert_to_apex_amp, convert_to_naive_amp from colossalai.testing import assert_close_loose, clear_cache_before_run, rerun_if_address_is_in_use, spawn from tests.components_to_test.registry import non_distributed_component_funcs def check_equal(a, b): """ This function checks if two tensors are equal within tolerance """ assert torch.allclose(a.float(), b.float(), rtol=1e-4, atol=1e-3), f'a = {a}, b = {b}' def run_naive_amp(): """ In this test, we compare the naive fp16 optimizer implemented in colossalai and fp32 torch optimizer """ torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True # create layer test_models = ['repeated_computed_layers', 'nested_model', 'resnet18'] for test_name in test_models: get_component_func = non_distributed_component_funcs.get_callable(test_name) model_builder, train_dataloader, _, optim_class, _ = get_component_func() # create model naive_amp_model = model_builder(checkpoint=True).cuda() apex_amp_model = copy.deepcopy(naive_amp_model) # create optimizer # we use SGD here, since the correctness of gradient clipping can't be tested with Adam naive_amp_optimizer = torch.optim.SGD(naive_amp_model.parameters(), lr=1e-3) apex_amp_optimizer = torch.optim.SGD(apex_amp_model.parameters(), lr=1e-3) # inject naive and apex amp naive_amp_config = dict(initial_scale=128, clip_grad_norm=1.0) naive_amp_model, naive_amp_optimizer = convert_to_naive_amp(naive_amp_model, naive_amp_optimizer, naive_amp_config) apex_amp_config = dict(opt_level='O2', loss_scale=128, keep_batchnorm_fp32=False) apex_amp_model, apex_amp_optimizer = convert_to_apex_amp(apex_amp_model, apex_amp_optimizer, apex_amp_config) # create data data_iter = iter(train_dataloader) data, label = next(data_iter) data = data.cuda() # forward pass naive_amp_output = naive_amp_model(data) apex_amp_output = apex_amp_model(data) assert_close_loose(naive_amp_output, apex_amp_output) # backward # use sum() to get big gradient naive_amp_optimizer.backward(naive_amp_output.sum()) apex_amp_optimizer.backward(apex_amp_output.sum()) # check grad for naive_amp_param, apex_amp_param in zip(naive_amp_model.parameters(), apex_amp_model.parameters()): assert_close_loose(naive_amp_param.grad, apex_amp_param.grad) # clip gradient apex_amp_optimizer.clip_grad_norm(model=apex_amp_model, max_norm=1.0) # step naive_amp_optimizer.step() apex_amp_optimizer.step() # check updated param for naive_amp_param, apex_amp_param in zip(naive_amp_model.parameters(), apex_amp_model.parameters()): assert_close_loose(naive_amp_param, apex_amp_param) def run_dist(rank, world_size, port): colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost') run_naive_amp() @pytest.mark.dist @rerun_if_address_is_in_use() @clear_cache_before_run() def test_naive_amp(): spawn(run_dist, 1) if __name__ == '__main__': test_naive_amp()