#!/usr/bin/env python # -*- encoding: utf-8 -*- import copy from functools import partial import colossalai import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from colossalai.utils import free_port from colossalai.zero.shard_utils import TensorShardStrategy from colossalai.zero.sharded_model import ShardedModelV2 from colossalai.zero.sharded_optim import ShardedOptimizerV2 from tests.components_to_test.registry import non_distributed_component_funcs from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import Adam from common import CONFIG, check_sharded_params_padding def run_step(model, optimizer, data, label, criterion, enable_autocast=False): model.train() optimizer.zero_grad() with torch.cuda.amp.autocast(enabled=enable_autocast): y = model(data) loss = criterion(y, label) loss = loss.float() if isinstance(model, ShardedModelV2): optimizer.backward(loss) else: loss.backward() optimizer.step() def run_step_no_criterion(model, optimizer, data, label, enable_autocast=False): model.train() optimizer.zero_grad() with torch.cuda.amp.autocast(enabled=enable_autocast): loss = model(data, label) if isinstance(model, ShardedModelV2): optimizer.backward(loss) else: loss.backward() optimizer.step() def run_dist(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') test_models = ['repeated_computed_layers', 'resnet18', 'bert'] for model_name in test_models: get_components_func = non_distributed_component_funcs.get_callable(model_name) shard_strategy = TensorShardStrategy() model, train_dataloader, test_dataloader, optimizer, criterion = get_components_func() model = model(checkpoint=True).cuda() zero_model = ShardedModelV2(copy.deepcopy(model), shard_strategy) if dist.get_world_size() > 1: model = DDP(model) optim = Adam(model.parameters(), lr=1e-3) sharded_optim = ShardedOptimizerV2(Adam(zero_model.parameters(), lr=1e-3), zero_model, shard_strategy, initial_scale=2**5) for i, (data, label) in enumerate(train_dataloader): if i > 2: break data, label = data.cuda(), label.cuda() if criterion is None: run_step_no_criterion(model, optim, data, label, False) run_step_no_criterion(zero_model, sharded_optim, data, label, False) else: run_step(model, optim, data, label, criterion, False) run_step(zero_model, sharded_optim, data, label, criterion, False) check_sharded_params_padding(model, zero_model, loose=True) @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 2, 4]) def test_sharded_optim_v2(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_sharded_optim_v2(world_size=2)