import math import torch from .registry import meta_patched_module @meta_patched_module.register(torch.nn.Linear) def torch_nn_linear(self, input): last_dim = input.shape[-1] assert last_dim == self.in_features, f'Expected hidden size {self.in_features} but got {last_dim} for the torch.nn.Linear patch' return torch.empty(input.shape[:-1] + (self.out_features,), device="meta") @meta_patched_module.register(torch.nn.LayerNorm) @meta_patched_module.register(torch.nn.GroupNorm) @meta_patched_module.register(torch.nn.BatchNorm1d) @meta_patched_module.register(torch.nn.BatchNorm2d) @meta_patched_module.register(torch.nn.BatchNorm3d) def torch_nn_normalize(self, input): # check shape if isinstance(self, torch.nn.BatchNorm1d): assert input.dim() in [2, 3] elif isinstance(self, torch.nn.BatchNorm2d): assert input.dim() == 4 elif isinstance(self, torch.nn.BatchNorm3d): assert input.dim() == 5 # normalization maintain the same shape as the input return input.clone() @meta_patched_module.register(torch.nn.Embedding) def torch_nn_embedding(self, input): result_shape = input.shape + (self.embedding_dim,) return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.Conv1d) def torch_nn_conv1d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv1d l_in = input.shape[-1] c_out = self.out_channels l_out = math.floor((l_in + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1) result_shape = input.shape[:-2] + ( c_out, l_out, ) return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.Conv2d) def torch_nn_conv2d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv2d h_in, w_in = input.shape[-2:] c_out = self.out_channels h_out = math.floor((h_in + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1) w_out = math.floor((w_in + 2 * self.padding[1] - self.dilation[1] * (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1) result_shape = input.shape[:-3] + ( c_out, h_out, w_out, ) return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.Conv3d) def torch_nn_conv3d(self, input): # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv3d d_in, h_in, w_in = input.shape[-3:] c_out = self.out_channels d_out = math.floor((d_in + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1) h_out = math.floor((h_in + 2 * self.padding[1] - self.dilation[1] * (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1) w_out = math.floor((w_in + 2 * self.padding[2] - self.dilation[2] * (self.kernel_size[2] - 1) - 1) / self.stride[2] + 1) result_shape = input.shape[:-4] + ( c_out, d_out, h_out, w_out, ) return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.MaxPool3d) def torch_nn_maxpool3d(self, input): num_dim = input.dim() assert num_dim in [4, 5], f'expected the input to have 4 or 5 dimensions, but got {num_dim} dimensions' d_in, h_in, w_in = input.shape[-3:] def _convert_int_to_list(item): if isinstance(item, int): return [item] * 3 else: return item padding = _convert_int_to_list(self.padding) dilation = _convert_int_to_list(self.dilation) kernel_size = _convert_int_to_list(self.kernel_size) stride = _convert_int_to_list(self.stride) d_out = math.floor((d_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1) h_out = math.floor((h_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1) w_out = math.floor((w_in + 2 * padding[2] - dilation[2] * (kernel_size[2] - 1) - 1) / stride[2] + 1) result_shape = input.shape[:-3] + ( d_out, h_out, w_out, ) return torch.empty(result_shape, device='meta') @meta_patched_module.register(torch.nn.ReLU) def torch_nn_func_relu(self, input): assert not self.inplace, 'inplace is not supported yet' return input.clone()