import tempfile import torch from torch.optim import Adam from torchvision.models import resnet18 from colossalai.checkpoint_io import GeneralCheckpointIO # ======== # Note: # 1. due to checkpoint IO can be quite slow if tested with all models, we will only test on resnet for now # 2. we will test on both sharded and unsharded checkpoints # 3. TODO(FrankLeeeee): implement sharded checkpoint and test it # ======== def test_unsharded_checkpoint(): # create a model and optimizer model = resnet18() optimizer = Adam(model.parameters(), lr=0.001) # create test data sample x = torch.randn(1, 3, 224, 224) # run fwd and bwd y = model(x) loss = y.sum() loss.backward() optimizer.step() # create a temp file for checkpoint model_ckpt_tempfile = tempfile.NamedTemporaryFile() optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile() # save the model and optimizer ckpt_io = GeneralCheckpointIO() ckpt_io.save_model(model, model_ckpt_tempfile.name) ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name) # create new model new_model = resnet18() new_optimizer = Adam(new_model.parameters(), lr=0.001) # load the model and optimizer ckpt_io.load_model(new_model, model_ckpt_tempfile.name) ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name) # do recursive check for the optimizer state dict # if the value is a dict, compare its values # if the value is a list, comapre all elements one-by-one # if the value is a torch.Tensor, use torch.equal # otherwise use assertEqual def recursive_check(d1, d2): for k, v in d1.items(): if isinstance(v, dict): recursive_check(v, d2[k]) elif isinstance(v, list): for i in range(len(v)): if isinstance(v[i], torch.Tensor): assert torch.equal(v[i], d2[k][i]) else: assert v[i] == d2[k][i] elif isinstance(v, torch.Tensor): assert torch.equal(v, d2[k]) else: assert v == d2[k] # check for model and optimizer state dict recursively recursive_check(model.state_dict(), new_model.state_dict()) recursive_check(optimizer.state_dict(), new_optimizer.state_dict())