from contextlib import contextmanager from enum import Enum from functools import partial from typing import List import torch from colossalai.tensor.param_op_hook import ColoParamOpHook from colossalai.zero.gemini.memory_tracer import MemStats, SyncCudaMemoryMonitor from colossalai.zero.legacy.gemini.tensor_utils import alloc_storage, free_storage class TrainingPhase(Enum): FORWARD = 0 BACKWARD = 1 class GradMemStats(): def __init__(self) -> None: self.unreleased_grad_flag = {} self.unreleased_grad_volume = 0 def clear(self): self.unreleased_grad_flag.clear() self.unreleased_grad_volume = 0 class GradMemTracerHook(): def __init__(self, grad_stats: GradMemStats): self.grad_hook_list = [] self._grad_stats = grad_stats def grad_handle(self, p, grad): assert self._grad_stats.unreleased_grad_flag[p] free_storage(grad) self._grad_stats.unreleased_grad_volume -= grad.numel() * grad.element_size() self._grad_stats.unreleased_grad_flag[p] = False def register_grad_hook(self, module: torch.nn.Module): for p in module.parameters(): if p.requires_grad: self.grad_hook_list.append(p.register_hook(partial(self.grad_handle, p))) self._grad_stats.unreleased_grad_flag[p] = False def remove_grad_hook(self): for hook in self.grad_hook_list: hook.remove() class ParamMemTracerHook(ColoParamOpHook): def __init__(self, memstats: MemStats, gradstats: GradMemStats) -> None: super().__init__() self._training_phase = TrainingPhase.FORWARD self._memstats = memstats self._grad_stats = gradstats self.mem_monitor = SyncCudaMemoryMonitor() def _free_cuda_params(self, params): for p in params: if p.data.device.type == "cpu": raise NotImplementedError("Only free cuda memory") free_storage(p.data) def _allocate_params_on_cuda(self, params: List[torch.nn.Parameter]): """ move params to cuda Args: params (List[torch.nn.Parameter]): target params Raises: NotImplementedError: raise error when param has cpu grad """ for p in params: cur_dev = p.data.device.type if cur_dev == "cpu": if p.grad is not None and p.grad.device.type == "cpu": raise NotImplementedError("Only run in forward propagation") p.data = torch.empty(p.data.shape, device="cuda", dtype=p.data.dtype, requires_grad=p.data.requires_grad) elif cur_dev == "cuda": alloc_storage(p.data) def record_model_data_volume(self, params): """ get cuda model data used by params """ data_volume = self._grad_stats.unreleased_grad_volume for p in params: cur_model_data_volume = p.data.numel() * p.data.element_size() data_volume += cur_model_data_volume if self._training_phase == TrainingPhase.BACKWARD and p.requires_grad: # add param.grad, actually param.grad is None in this time data_volume += cur_model_data_volume if not self._grad_stats.unreleased_grad_flag[p]: self._grad_stats.unreleased_grad_volume += cur_model_data_volume self._grad_stats.unreleased_grad_flag[p] = True # record max non model data used for this Op self._memstats.record_max_cuda_model_data(data_volume) def pre_op(self, params): max_cuda_used_pre_op = self.mem_monitor.finish() # record max cuda overall data for prev OP. self._memstats.record_max_cuda_overall_data(max_cuda_used_pre_op) # record max cuda non model data for prev OP. self._memstats.calc_max_cuda_non_model_data() self._allocate_params_on_cuda(params) # record max cuda model data for current OP self.record_model_data_volume(params) self.mem_monitor.start() self._memstats.increase_preop_step(params) def post_op(self, params): self._free_cuda_params(params) def pre_forward(self, params: List[torch.Tensor]) -> None: self.pre_op(params) def post_forward(self, params: List[torch.Tensor]) -> None: self.post_op(params) def pre_backward(self, params: List[torch.Tensor]) -> None: self.pre_op(params) def post_backward(self, params: List[torch.Tensor]) -> None: self.post_op(params) @contextmanager def switch_training_phase(self, training_phase: TrainingPhase = TrainingPhase.BACKWARD): old_training_phase = self._training_phase try: self._training_phase = training_phase yield finally: self._training_phase = old_training_phase switch_to_backward = switch_training_phase switch_to_forward = partial(switch_to_backward, training_phase=TrainingPhase.FORWARD)