import functools from time import time from typing import Dict, List, Optional, Tuple import torch from .chunk import Chunk, ChunkManager from .memory_tracer import ChunkMemStatsCollector, MemStats from .placement_policy import PlacementPolicyFactory class GeminiManager: """ Stateful Tensor Manager, inspired from PatrickStar PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management https://arxiv.org/abs/2108.05818 Args: placement_policy (str): Which device to place *held* tensors. It can be 'cpu', 'cuda' and 'auto'. If it's 'cpu', parameters, gradients and optimizer states will be offloaded to CPU, which means min CUDA memory will be used. If it's 'cuda', they won't be offloaded, which means max CUDA memory will be used. If it's 'auto', they are moving dynamically based on CPU and CUDA memory usage. It will utilize heterogeneous memory space evenly and well. Note that 'auto' policy can only work well when no other processes use CUDA during your training. chunk_manager (ChunkManager): A ``ChunkManager`` instance. memstats (MemStats, optional): a mem stats collected by a runtime mem tracer. if None then GeminiManager will collect it during a warmup iteration. """ def __init__(self, placement_policy: str, chunk_manager: ChunkManager, memstats: Optional[MemStats] = None, **placement_kwargs) -> None: assert placement_policy in PlacementPolicyFactory.get_policy_names() self.policy_name = placement_policy policy_cls = PlacementPolicyFactory.create(placement_policy) self._chunk_manager = chunk_manager self._premade_memstats_ = memstats is not None self._memstats = memstats self._mem_stats_collector = ChunkMemStatsCollector(chunk_manager, self._memstats) if policy_cls.need_mem_stats else None self._placement_policy = policy_cls(chunk_manager, self._mem_stats_collector, **placement_kwargs) self._compute_list: List[Tuple[Chunk, ...]] = [] self._compute_idx: int = -1 self._h2d_volume = 0 self._d2h_volume = 0 self._layout_time = 0 self._evict_time = 0 self._warmup = True self._comp_cuda_demand_time = 0 def reset_attributes(self): self._compute_idx = -1 self._h2d_volume = 0 self._d2h_volume = 0 self._layout_time = 0 self._evict_time = 0 self._comp_cuda_demand_time = 0 @property def need_warmup(self) -> bool: return self.policy_name in ('auto', 'const') def is_warmup(self): return self._warmup def memstats(self): """memstats get the memory statistics during training. The stats could be collected by a runtime memory tracer, or collected by the GeminiManager. Note, for the latter, you can not access the memstats before warmup iteration finishes. """ if self._premade_memstats_: return self._memstats else: assert not self._warmup, "Gemini Manager has memstats after warm up! Now is during warmup." return self._mem_stats_collector._memstats def pre_iter(self, *args): if self._mem_stats_collector and self._warmup: self._mem_stats_collector.start_collection() def post_iter(self): """This function must be called when each iteration finishes """ if self._mem_stats_collector and self._warmup: self._mem_stats_collector.finish_collection() self._warmup = False self.reset_attributes() def adjust_layout(self, chunks: Tuple[Chunk, ...]) -> None: """ Adjust the layout of stateful tensors according to the information provided by mem_stats_collector, which should belongs to a Sharded Model. """ # find stateful tensor in state COMPUTE start = time() self._record_chunks_order(chunks) cuda_demand, hold_cuda_tensor_list = self._get_layout_info(self._compute_idx, self._warmup, chunks) self._layout_time += time() - start vol, evict_time = self._placement_policy.evict_tensors(can_evict_chunks=hold_cuda_tensor_list, cuda_demand=cuda_demand, warmup=self._warmup, compute_list=self._compute_list, compute_idx=self._compute_idx) self._d2h_volume += vol self._evict_time += evict_time # move COMPUTE tensors to CUDA self._h2d_volume += cuda_demand @functools.lru_cache(maxsize=None) def _get_layout_info(self, compute_idx: int, warmup: bool, chunks: Tuple[Chunk, ...]): start = time() cuda_demand = 0 for chunk in chunks: if chunk.device_type == 'cuda': if chunk.is_gathered: pass else: cuda_demand += chunk.chunk_mem - chunk.shard_mem elif chunk.device_type == 'cpu': cuda_demand += chunk.chunk_mem else: raise RuntimeError self._comp_cuda_demand_time += time() - start can_evict_chunks = self._chunk_manager.get_cuda_movable_chunks() return cuda_demand, can_evict_chunks def _record_chunks_order(self, chunks: Tuple[Chunk, ...]) -> None: self._compute_idx += 1 if self._warmup and self._placement_policy.need_mem_stats: self._compute_list.append(chunks) def sample_overall_data(self): if self._mem_stats_collector: self._mem_stats_collector.sample_overall_data() def record_model_data_volume(self): if self._mem_stats_collector: self._mem_stats_collector.record_model_data_volume() @property def chunk_manager(self): return self._chunk_manager @property def cuda_margin_mem(self) -> Optional[float]: if self._mem_stats_collector: return self._mem_stats_collector.cuda_margin_mem return None @property def is_cuda_margin_mem_avail(self) -> bool: return self._placement_policy.need_mem_stats def setup_grads_device(self, params: List[torch.Tensor], grads_device_map: Dict[torch.Tensor, torch.device]) -> None: self._placement_policy.setup_grads_device(params, grads_device_map)