# modified from https://github.com/NVIDIA/apex/blob/master/apex/optimizers/fused_sgd.py import torch from torch.optim.optimizer import Optimizer, required from colossalai.utils import multi_tensor_applier class FusedSGD(Optimizer): r"""Implements stochastic gradient descent (optionally with momentum). `FusedSGD` requires CUDA extensions which can be built during installation or runtime. This version of fused SGD implements 2 fusions. * Fusion of the SGD update's elementwise operations * A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches. :class:`colossalai.nn.optimizer.FusedSGD` may be used as a drop-in replacement for ``torch.optim.SGD`` :class:`colossalai.nn.optimizer.FusedSGD` may be used with or without Amp. Nesterov momentum is based on the formula from `On the importance of initialization and momentum in deep learning`__. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float): learning rate momentum (float, optional): momentum factor (default: 0) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) dampening (float, optional): dampening for momentum (default: 0) nesterov (bool, optional): enables Nesterov momentum (default: False) __ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf .. note:: The implementation of SGD with Momentum/Nesterov subtly differs from Sutskever et. al. and implementations in some other frameworks. Considering the specific case of Momentum, the update can be written as .. math:: v = \rho * v + g \\ p = p - lr * v where p, g, v and :math:`\rho` denote the parameters, gradient, velocity, and momentum respectively. This is in contrast to Sutskever et. al. and other frameworks which employ an update of the form .. math:: v = \rho * v + lr * g \\ p = p - v The Nesterov version is analogously modified. """ def __init__(self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False, wd_after_momentum=False): if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError("Nesterov momentum requires a momentum and zero dampening") super(FusedSGD, self).__init__(params, defaults) self.wd_after_momentum = wd_after_momentum if multi_tensor_applier.available: from colossalai.kernel.op_builder import FusedOptimBuilder fused_optim = FusedOptimBuilder().load() # Skip buffer self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device=self.param_groups[0]["params"][0].device) self.multi_tensor_sgd = fused_optim.multi_tensor_sgd else: raise RuntimeError('FusedSGD requires cuda extensions') def __setstate__(self, state): super(FusedSGD, self).__setstate__(state) for group in self.param_groups: group.setdefault('nesterov', False) def get_momentums(self, params): momentums = [] first_run = True for p in params: param_state = self.state[p] # torch.optim.SGD initializes momentum in the main loop, we have # to do it here, and track whether or not we've done so, so that # momentum application can be skipped in the main kernel. if 'momentum_buffer' not in param_state: first_run = True buf = param_state['momentum_buffer'] = torch.zeros_like(p) momentums.append(buf) else: first_run = False momentums.append(param_state['momentum_buffer']) return momentums, first_run def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] # For each group, there are 3 possible combinations we need to consider: # grad_type, param_to_update_type, momentum_type # 1. fp16, fp16, fp16 # 2. fp32, fp32, fp32 # 3. fp16, fp32, fp32 g_l, p_l = [], [] for p in group['params']: if p.grad is None: continue if p.grad.data.is_sparse: raise RuntimeError('FusedSGD does not support sparse gradients') g_l.append(p.grad) p_l.append(p) m_l, first_run = self.get_momentums(p_l) multi_tensor_applier(self.multi_tensor_sgd, self._dummy_overflow_buf, [g_l, p_l, m_l], weight_decay, momentum, dampening, group['lr'], nesterov, first_run, self.wd_after_momentum, 1.0) return loss