# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import math import operator from functools import reduce from typing import Tuple import torch from ..registry import meta_profiler_module @meta_profiler_module.register(torch.nn.Conv1d) def torch_nn_conv1d(self: torch.nn.Conv1d, input: torch.Tensor) -> Tuple[int, int]: # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html c_in, l_in = input.shape[-2:] c_out = self.out_channels l_out = math.floor((l_in + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1) result_shape = input.shape[:-2] + ( c_out, l_out, ) macs_per_elem = reduce(operator.mul, self.kernel_size) * c_in // self.groups num_elem = reduce(operator.mul, result_shape) macs = macs_per_elem * num_elem flops = 2 * macs if self.bias is not None: flops += num_elem return flops, macs @meta_profiler_module.register(torch.nn.Conv2d) def torch_nn_conv2d(self: torch.nn.Conv2d, input: torch.Tensor) -> Tuple[int, int]: # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html c_in, h_in, w_in = input.shape[-3:] c_out = self.out_channels h_out = math.floor((h_in + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1) w_out = math.floor((w_in + 2 * self.padding[1] - self.dilation[1] * (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1) result_shape = input.shape[:-3] + ( c_out, h_out, w_out, ) macs_per_elem = reduce(operator.mul, self.kernel_size) * c_in // self.groups num_elem = reduce(operator.mul, result_shape) macs = macs_per_elem * num_elem flops = 2 * macs if self.bias is not None: flops += num_elem return flops, macs @meta_profiler_module.register(torch.nn.Conv3d) def torch_nn_conv3d(self: torch.nn.Conv3d, input: torch.Tensor) -> Tuple[int, int]: # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.Conv3d.html c_in, d_in, h_in, w_in = input.shape[-4:] c_out = self.out_channels d_out = math.floor((d_in + 2 * self.padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1) h_out = math.floor((h_in + 2 * self.padding[1] - self.dilation[1] * (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1) w_out = math.floor((w_in + 2 * self.padding[2] - self.dilation[2] * (self.kernel_size[2] - 1) - 1) / self.stride[2] + 1) result_shape = input.shape[:-4] + ( c_out, d_out, h_out, w_out, ) macs_per_elem = reduce(operator.mul, self.kernel_size) * c_in // self.groups num_elem = reduce(operator.mul, result_shape) macs = macs_per_elem * num_elem flops = 2 * macs if self.bias is not None: flops += num_elem return flops, macs @meta_profiler_module.register(torch.nn.ConvTranspose1d) def torch_nn_convtranspose1d(self: torch.nn.ConvTranspose1d, input: torch.Tensor) -> Tuple[int, int]: # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose1d.html c_in, l_in = input.shape[-2:] c_out = self.out_channels l_out = math.floor((l_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] * (self.kernel_size[0] - 1) + self.output_padding[0] + 1) result_shape = input.shape[:-2] + ( c_out, l_out, ) macs_per_elem = reduce(operator.mul, self.kernel_size) * c_in // self.groups num_elem = reduce( operator.mul, input.shape ) # see https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/profiling/flops_profiler/profiler.py#L604 macs = macs_per_elem * num_elem flops = 2 * macs if self.bias is not None: flops += reduce(operator.mul, result_shape) return flops, macs @meta_profiler_module.register(torch.nn.ConvTranspose2d) def torch_nn_convtranspose2d(self: torch.nn.ConvTranspose2d, input: torch.Tensor) -> Tuple[int, int]: # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html c_in, h_in, w_in = input.shape[-3:] c_out = self.out_channels h_out = math.floor((h_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] * (self.kernel_size[0] - 1) + self.output_padding[0] + 1) w_out = math.floor((w_in - 1) * self.stride[1] - 2 * self.padding[1] + self.dilation[1] * (self.kernel_size[1] - 1) + self.output_padding[1] + 1) result_shape = input.shape[:-3] + ( c_out, h_out, w_out, ) macs_per_elem = reduce(operator.mul, self.kernel_size) * c_in // self.groups num_elem = reduce(operator.mul, input.shape) macs = macs_per_elem * num_elem flops = 2 * macs if self.bias is not None: flops += reduce(operator.mul, result_shape) return flops, macs @meta_profiler_module.register(torch.nn.ConvTranspose3d) def torch_nn_convtranspose3d(self: torch.nn.ConvTranspose3d, input: torch.Tensor) -> Tuple[int, int]: # the output shape is calculated using the formula stated # at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose3d.html c_in, d_in, h_in, w_in = input.shape[-4:] c_out = self.out_channels d_out = math.floor((d_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] * (self.kernel_size[0] - 1) + self.output_padding[0] + 1) h_out = math.floor((h_in - 1) * self.stride[1] - 2 * self.padding[1] + self.dilation[1] * (self.kernel_size[1] - 1) + self.output_padding[1] + 1) w_out = math.floor((w_in - 1) * self.stride[2] - 2 * self.padding[2] + self.dilation[2] * (self.kernel_size[2] - 1) + self.output_padding[2] + 1) result_shape = input.shape[:-4] + ( c_out, d_out, h_out, w_out, ) macs_per_elem = reduce(operator.mul, self.kernel_size) * c_in // self.groups num_elem = reduce(operator.mul, input.shape) macs = macs_per_elem * num_elem flops = 2 * macs if self.bias is not None: flops += reduce(operator.mul, result_shape) return flops, macs