import torch import triton import triton.language as tl @triton.jit def prefill_cache_kernel( CaChe, cumsum_lengths, output, cache_stride, hidden_stride, total_length, HIDDEN_DIM: tl.constexpr, N_ELEMENTS: tl.constexpr, BLOCK_SIZE: tl.constexpr, ): idx0 = tl.program_id(axis=0) idx1 = tl.program_id(axis=1) idx = idx0 * BLOCK_SIZE + idx1 # original seq_idx and pos cumsum_lens = tl.load(cumsum_lengths + tl.arange(0, N_ELEMENTS)) ori_seq_idx = idx - tl.max(tl.where(cumsum_lens <= idx, cumsum_lens, 0)) _cache = tl.load(CaChe + ori_seq_idx * cache_stride + tl.arange(0, HIDDEN_DIM) * hidden_stride) tl.store(output + idx * cache_stride + tl.arange(0, HIDDEN_DIM) * hidden_stride, _cache, mask=idx < total_length) @triton.jit def decoding_cache_kernel( CaChe, lengths, output, cache_stride, hidden_stride, HIDDEN_DIM: tl.constexpr, NUM_SEQS: tl.constexpr, BLOCK_SIZE: tl.constexpr, ): idx = tl.program_id(0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) ori_seq_idx = tl.load(lengths + idx, mask=(idx < NUM_SEQS), other=None) # [BLOCK_SIZE,] _cache = tl.load(CaChe + ori_seq_idx[:, None] * cache_stride + tl.arange(0, HIDDEN_DIM)[None, :] * hidden_stride) tl.store( output + (idx[:, None] * cache_stride + tl.arange(0, HIDDEN_DIM)[None, :] * hidden_stride), _cache, mask=idx[:, None] < NUM_SEQS, ) @torch.no_grad() def get_xine_cache(lengths: torch.Tensor, cache: torch.Tensor, is_prompts: bool = False): """ Transform cos/sin cache into no pad sequence, with two different modes. Args: lengths: shape(num_seqs,), stores lenghth of each sequence. cache: shape(max_rotary_position(e.g.2048), head_dim), cos/sin cache constrcuted in model. is_prompts: bool, mark if in prefill mode. For prefill mode: cos/sin cache for each sequence is equal to its length. For decoding mode: cos/sin cache is only needed for the last token. """ _, hidden_dim = cache.shape num_seqs = lengths.numel() BLOCK_SIZE = 16 if hidden_dim >= 128: num_warps = 8 else: num_warps = 4 cache_stride = cache.stride(0) hidden_stride = cache.stride(1) if is_prompts: total_length = lengths.sum().item() cumsum_lens = torch.cumsum(lengths, dim=0) output = torch.empty((total_length, hidden_dim), dtype=cache.dtype, device=cache.device) grid = (triton.cdiv(total_length, BLOCK_SIZE), BLOCK_SIZE) prefill_cache_kernel[grid]( cache, cumsum_lens, output, cache_stride, hidden_stride, total_length, HIDDEN_DIM=hidden_dim, N_ELEMENTS=triton.next_power_of_2(num_seqs), BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps, ) else: # BUG: get memory access error whe using a deepcopy lengths to replace lengths nlengths = torch.as_tensor(lengths) - 1 output = torch.empty((num_seqs, hidden_dim), dtype=cache.dtype, device=cache.device) grid = (triton.cdiv(num_seqs, BLOCK_SIZE),) decoding_cache_kernel[grid]( cache, nlengths, output, cache_stride, hidden_stride, HIDDEN_DIM=hidden_dim, NUM_SEQS=num_seqs, BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps, ) return output