import itertools from collections import OrderedDict from functools import partial from typing import Dict, Iterable, List, Optional, Set import torch import torch.distributed as dist import torch.nn as nn from colossalai.gemini.chunk import Chunk, ChunkManager, TensorState from colossalai.gemini.gemini_mgr import GeminiManager from colossalai.gemini.memory_tracer import OrderedParamGenerator from colossalai.logging import get_dist_logger from colossalai.nn.parallel.utils import get_temp_total_chunk_on_cuda from colossalai.tensor import ProcessGroup as ColoProcessGroup from colossalai.tensor import ReplicaSpec from colossalai.tensor.colo_parameter import ColoParameter, ColoTensor, ColoTensorSpec from colossalai.tensor.param_op_hook import ColoParamOpHookManager from colossalai.utils import get_current_device, is_ddp_ignored from colossalai.zero.utils.gemini_hook import GeminiZeROHook from .reducer import Reducer from .utils import get_static_torch_model try: from torch.nn.modules.module import _EXTRA_STATE_KEY_SUFFIX, _IncompatibleKeys except ImportError: _EXTRA_STATE_KEY_SUFFIX = '_extra_state' def free_storage(data: torch.Tensor) -> None: """Free underlying storage of a Tensor.""" if data.storage().size() > 0: # Since we're modifying the Tensor's Storage directly, make sure the Tensor # is the sole occupant of the Storage. assert data.storage_offset() == 0 data.storage().resize_(0) def _cast_float(args, dtype: torch.dtype): if isinstance(args, torch.Tensor) and torch.is_floating_point(args): args = args.to(dtype) elif isinstance(args, (list, tuple)): args = type(args)(_cast_float(t, dtype) for t in args) elif isinstance(args, dict): args = {k: _cast_float(v, dtype) for k, v in args.items()} return args class ColoDDP(torch.nn.Module): """Distributed data parallel for ColoTensor. Nested ColoDDP is not supported now. Example: >>> from colossalai.core import global_context as gpc >>> from colossalai.context import ParallelMode >>> model = torch.nn.Linear(20, 1) >>> pg = ProcessGroup(tp_degree = world_size//2) >>> model = ColoDDP(model, pg) >>> logits = model(x) >>> loss = criterion(logits, labels) >>> model.backward(loss) Args: module (torch.nn.Module): Module to apply DDP. process_group (Optional[dist.ProcessGroup], optional): The process group which DDP uses. If it's None, the default data parallel group will be used. Defaults to None. """ def __init__(self, module: torch.nn.Module, process_group: ColoProcessGroup, bucket_cap_mb: int = 25, rebuild_bucket: bool = True) -> None: assert not isinstance(module, ColoDDP) super().__init__() self.module = module self.comm_stream: torch.cuda.Stream = torch.cuda.Stream() assert process_group self.process_group = process_group self.dp_world_size = self.process_group.dp_world_size() self.reducer = Reducer(bucket_cap_mb) self.rebuild_bucket = rebuild_bucket for p in module.parameters(): if is_ddp_ignored(p): continue if p.requires_grad: p.register_hook(partial(self.grad_handle, p)) def parameters(self, recurse: bool = True): return self.module.parameters(recurse) def named_parameters(self, prefix: str = '', recurse: bool = True): return self.module.named_parameters(prefix, recurse) def named_buffers(self, prefix: str = '', recurse: bool = True): return self.module.named_buffers(prefix, recurse) def named_children(self): return self.module.named_children() def named_modules(self, memo: Optional[Set[torch.nn.Module]] = None, prefix: str = '', remove_duplicate: bool = True): return self.module.named_modules(memo, prefix, remove_duplicate) def forward(self, *args, **kwargs): self.module.zero_grad(set_to_none=True) return self.module(*args, **kwargs) def backward(self, loss: torch.Tensor): loss.backward() with torch.cuda.stream(self.comm_stream): self.reducer.flush() torch.cuda.current_stream().wait_stream(self.comm_stream) if self.rebuild_bucket: self.reducer.free() for p in self.module.parameters(): if is_ddp_ignored(p): continue if p.grad.device.type != "cpu": p.grad = p._saved_grad def grad_handle(self, p, grad): if grad.device.type != "cpu": empty_grad = torch.empty_like(grad) free_storage(empty_grad) if self.dp_world_size > 1: grad = grad / self.dp_world_size self.comm_stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(self.comm_stream): self.reducer.all_reduce_async(grad, group=self.process_group.dp_process_group(), callback_fn=partial(self._save_grad, p)) grad.record_stream(self.comm_stream) else: ColoDDP._save_grad(p, grad) return empty_grad else: # TODO(jiaruifang) fixme self.process_group.set_cpu_groups() dist.all_reduce(grad, group=self.process_group.cpu_dp_process_group()) return grad @staticmethod def _save_grad(p, grad): if hasattr(p, '_saved_grad'): p._saved_grad.add_(grad) else: p._saved_grad = grad def zero_grad(self, set_to_none: bool = False) -> None: self.module.zero_grad(set_to_none=True) for p in self.module.parameters(): if getattr(p, '_saved_grad', None) is not None: if set_to_none: p._saved_grad = None else: if p._saved_grad.grad_fn is not None: p._saved_grad.detach_() else: p._saved_grad.requires_grad_(False) p._saved_grad.zero_() @staticmethod def set_params_to_ignore(params_to_ignore: Iterable[torch.Tensor]) -> None: """Sets parameters to be ignored by DDP. This method must be called before initializing ColoDDP. Example: >>> params_to_ignore = [] >>> for p in module.parameters(): >>> if should_ignore(p): >>> params_to_ignore.append(p) >>> ColoDDP.set_params_to_ignore(params_to_ignore) >>> module = ColoDDP(module) Args: params_to_ignore (Iterable[torch.Tensor]): A list of parameters to be ignored. """ for p in params_to_ignore: p._ddp_to_ignore = True def state_dict(self, destination=None, prefix='', keep_vars=False): return self.module.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars) def load_state_dict(self, state_dict: 'OrderedDict[str, torch.Tensor]', strict: bool = True): return self.module.load_state_dict(state_dict, strict) class ZeroDDP(ColoDDP): """ZeRO DDP for ColoTensor. Warning: Nested ZeroDDP is not supported now. It is designed to be used with ChunkManager and GeminiManager. For more details, see the API reference of ``ChunkManager`` and ``GeminiManager``. Args: module (torch.nn.Module): Module to apply ZeRO-DP. gemini_manager (GeminiManager): Manages the chunk manager and heterogeneous momery space. For more details, see the API reference of ``GeminiManager``. pin_memory (bool): Chunks on CPU Memory use pin-memory. force_outputs_fp32 (bool): If set to True, outputs will be fp32. Otherwise, outputs will be fp16. Defaults to False. strict_ddp_mode (bool): If set to True, there is no tensor sharding, each tensor is replicated. Defaults to False. Users can set it to True, when they clearly know that they only need DDP. """ def __init__(self, module: torch.nn.Module, gemini_manager: GeminiManager, pin_memory: bool = False, force_outputs_fp32: bool = False, strict_ddp_mode: bool = False) -> None: super().__init__(module, process_group=ColoProcessGroup()) self.gemini_manager = gemini_manager self.chunk_manager: ChunkManager = gemini_manager.chunk_manager self.force_outputs_fp32 = force_outputs_fp32 self.param_op_hook = GeminiZeROHook(gemini_manager) self.fp32_params: List[ColoTensor] = list() self.fp16_params: List[ColoParameter] = list() self.overflow_counter = 0 self.grads_device: Dict[torch.Tensor, torch.device] = dict() self.param2name: Dict[nn.Parameter, str] = dict() self.name2param: Dict[str, nn.Parameter] = dict() self._cast_buffers() self._logger = get_dist_logger() if self.gemini_manager._premade_memstats_: # build chunk in param runtime visited order. param_order = self.gemini_manager.memstats()._param_runtime_order else: # build chunk in param initialized order. # Note: in this way, it can not get filter unused params during runtime. param_order = OrderedParamGenerator() for p in module.parameters(): param_order.append(p) self._init_chunks(param_order=param_order, strict_ddp_mode=strict_ddp_mode, cpu_offload=self.gemini_manager.policy_name != 'cuda', pin_memory=pin_memory) for name, param in module.named_parameters(): self.param2name[param] = name for m_name, m_var in module.named_modules(): for p_name, p_var in m_var.named_parameters(recurse=False): param_name = m_name + '.' + p_name if m_name else p_name self.name2param[param_name] = p_var def _post_forward(self): """This function is only triggered for inference. """ access_list = list(self.chunk_manager.accessed_chunks) # we need to scatter all accessed chunks and move them to their original places for chunk in access_list: if chunk.keep_gathered: self.chunk_manager.fake_release_chunk(chunk) else: assert chunk.can_release self.chunk_manager.release_chunk(chunk) first_param = next(iter(chunk.tensors_info)) self.chunk_manager.move_chunk(chunk, self.grads_device[first_param]) assert self.chunk_manager.accessed_mem == 0 # reset all recorded attributes self.gemini_manager.reset_attributes() def forward(self, *args, **kwargs): # check whether we are in a inference mode grad_flag = torch.is_grad_enabled() if not grad_flag: assert not self.gemini_manager.need_warmup or not self.gemini_manager.is_warmup( ), "You should run a completed iteration as your warmup iter" args, kwargs = _cast_float(args, torch.half), _cast_float(kwargs, torch.half) self.module.zero_grad(set_to_none=True) self.gemini_manager.pre_iter(*args) with ColoParamOpHookManager.use_hooks(self.param_op_hook): outputs = self.module(*args, **kwargs) # scatter chunks in the inference mode if not grad_flag: self._post_forward() if self.force_outputs_fp32: return _cast_float(outputs, torch.float) return outputs def _setup_grads_ptr(self): for p in self.module.parameters(): if is_ddp_ignored(p): continue p.grad = None def _pre_bacward(self): # set a visit label for all parameters # the label is used to check whether the parameter is correctly reduced for param in self.param2name: if not is_ddp_ignored(param): setattr(param, "_gemini_reduced", False) def _post_backward(self): if self.chunk_manager.accessed_mem != 0: error_params = ["Reduction failed at followed parameters:"] for param in self.param2name: if not is_ddp_ignored(param) and not getattr(param, "_gemini_reduced"): error_params.append(self.param2name[param]) error_str = "\n\t".join(error_params) raise RuntimeError("ZERO DDP error: the synchronization of gradients doesn't exit properly.", "The most possible reason is that the model is not compatible with ZeroDDP.\n", f"{error_str}") self._setup_grads_ptr() self._logger.debug( f'comp cuda demand time: {self.gemini_manager._comp_cuda_demand_time}, layout time: {self.gemini_manager._layout_time}, evict time: {self.gemini_manager._evict_time}, CPU->CUDA vol: {self.gemini_manager._h2d_volume}B, CUDA->CPU vol: {self.gemini_manager._d2h_volume}' ) self.gemini_manager.post_iter() def backward(self, loss: torch.Tensor): self._pre_bacward() with self.param_op_hook.switch_to_backward(), ColoParamOpHookManager.use_hooks(self.param_op_hook): loss.backward() self._post_backward() def backward_by_grad(self, tensor, grad): with self.param_op_hook.switch_to_backward(), ColoParamOpHookManager.use_hooks(self.param_op_hook): torch.autograd.backward(tensor, grad) self._post_backward() def grad_handle(self, p, grad): empty_grad = torch.empty_like(grad) free_storage(empty_grad) with torch._C.DisableTorchFunction(): chunk = self.chunk_manager.get_chunk(p) if chunk.tensors_info[p].state != TensorState.HOLD_AFTER_BWD: raise RuntimeError(f"Parameter `{self.param2name[p]}` failed at the gradient reduction. " "Some unsupported torch function is operated upon this parameter.") self.chunk_manager.trans_tensor_state(p, TensorState.READY_FOR_REDUCE) chunk.copy_tensor_to_chunk_slice(p, grad) reduced = self.chunk_manager.reduce_chunk(chunk) if reduced: if chunk.is_gathered: chunk.cuda_global_chunk.div_(chunk.pg_size) else: chunk.cuda_shard.div_(chunk.pg_size) # check overflow elements self.overflow_counter += chunk.has_inf_or_nan # record l2 norm for gradient clipping if chunk.l2_norm_flag: chunk.set_l2_norm() self.chunk_manager.move_chunk(chunk, self.grads_device[p], force_copy=True) return empty_grad def zero_grad(self, set_to_none: bool = False) -> None: self.module.zero_grad(set_to_none=True) def set_chunk_grad_device(self, chunk: Chunk, device: torch.device) -> None: for tensor in chunk.get_tensors(): self.grads_device[tensor] = device def state_dict(self, destination=None, prefix='', keep_vars=False, only_rank_0: bool = True): """Returns a dictionary containing a whole state of the module. Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to ``None`` are not included. Warning: The non strict state dict would ignore the parameters if the tensors of the parameters are shared with other parameters which have been included in the dictionary. When you need to load the state dict, you should set the argument `strict` to False. Returns: dict: a dictionary containing a whole state of the module """ if destination is None: destination = OrderedDict() destination._metadata = OrderedDict() destination._metadata[prefix[:-1]] = local_metadata = dict(version=self._version) self._save_to_state_dict(destination, prefix, keep_vars, only_rank_0) for hook in self._state_dict_hooks.values(): hook_result = hook(self, destination, prefix, local_metadata) if hook_result is not None: destination = hook_result return destination def _get_param_to_save_data(self, param_list: List[torch.nn.Parameter], only_rank_0: bool) -> Dict: """ get param content from chunks. Args: param_list (_type_): a list of torch.nn.Parameters only_rank_0 (_type_): _description_ Returns: Dict: a dict whose key is param name and value is param with correct payload """ # save parameters param_to_save_data = dict() chunk_list = self.chunk_manager.get_chunks(param_list) for chunk in chunk_list: temp_chunk = get_temp_total_chunk_on_cuda(chunk) for tensor, tensor_info in chunk.tensors_info.items(): record_tensor = torch.empty([0]) record_flag = (not only_rank_0) | (dist.get_rank(chunk.torch_pg) == 0) if record_flag: record_tensor = temp_chunk[tensor_info.offset:tensor_info.end].view(tensor.shape).cpu() assert tensor not in param_to_save_data param_to_save_data[tensor] = record_tensor del temp_chunk return param_to_save_data def _save_to_state_dict(self, destination, prefix, keep_vars, only_rank_0=True): r"""Saves module state to `destination` dictionary, containing a state of the module, but not its descendants. This is called on every submodule in :meth:`~torch.nn.Module.state_dict`. In rare cases, subclasses can achieve class-specific behavior by overriding this method with custom logic. Args: destination (dict): a dict where state will be stored prefix (str): the prefix for parameters and buffers used in this module """ assert keep_vars is False, "`state_dict` with parameter, `keep_vars=True`, is not supported now." # get copies of fp32 parameters in CPU param_to_save_data = self._get_param_to_save_data(self.fp32_params, only_rank_0) # get the mapping between copies and fp16 parameters p_mapping = dict() for p, fp32_p in zip(self.fp16_params, self.fp32_params): name = self.param2name[p] assert fp32_p in param_to_save_data, "Parameter '{}' is neglected in the chunk list".format(name) record_parameter = param_to_save_data[fp32_p] p_mapping[p] = record_parameter for name, param in self.name2param.items(): if param is not None: if is_ddp_ignored(param): # deal with ddp ignored parameters destination[prefix + name] = param if keep_vars else param.detach() else: destination[prefix + name] = p_mapping[param] del p_mapping del param_to_save_data # save all buffers for name, buf in self.named_buffers(): if buf is not None and name not in self._non_persistent_buffers_set: destination[prefix + name] = buf if keep_vars else buf.detach() # save extra states extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX if getattr(self.__class__, "get_extra_state", torch.nn.Module.get_extra_state) is not torch.nn.Module.get_extra_state: destination[extra_state_key] = self.get_extra_state() def load_state_dict(self, state_dict: 'OrderedDict[str, torch.Tensor]', strict: bool = True): r"""Copies parameters and buffers from :attr:`state_dict` into this module and its descendants. If :attr:`strict` is ``True``, then the keys of :attr:`state_dict` must exactly match the keys returned by this module's :meth:`~torch.nn.Module.state_dict` function. Args: state_dict (dict): a dict containing parameters and persistent buffers. strict (bool, optional): whether to strictly enforce that the keys in :attr:`state_dict` match the keys returned by this module's :meth:`~torch.nn.Module.state_dict` function. Default: ``True`` Returns: ``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields: * **missing_keys** is a list of str containing the missing keys * **unexpected_keys** is a list of str containing the unexpected keys Note: If a parameter or buffer is registered as ``None`` and its corresponding key exists in :attr:`state_dict`, :meth:`load_state_dict` will raise a ``RuntimeError``. """ missing_keys: List[str] = [] unexpected_keys: List[str] = [] error_msgs: List[str] = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: # mypy isn't aware that "_metadata" exists in state_dict state_dict._metadata = metadata # type: ignore[attr-defined] prefix = '' local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) self._load_from_state_dict(state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) if strict: if len(unexpected_keys) > 0: error_msgs.insert( 0, 'Unexpected key(s) in state_dict: {}. '.format(', '.join( '"{}"'.format(k) for k in unexpected_keys))) if len(missing_keys) > 0: error_msgs.insert( 0, 'Missing key(s) in state_dict: {}. '.format(', '.join('"{}"'.format(k) for k in missing_keys))) if len(error_msgs) > 0: raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( self.__class__.__name__, "\n\t".join(error_msgs))) return _IncompatibleKeys(missing_keys, unexpected_keys) def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): r"""Copies parameters and buffers from :attr:`state_dict` into only this module, but not its descendants. This is called on every submodule in :meth:`~torch.nn.Module.load_state_dict`. Metadata saved for this module in input :attr:`state_dict` is provided as :attr:`local_metadata`. For state dicts without metadata, :attr:`local_metadata` is empty. Subclasses can achieve class-specific backward compatible loading using the version number at `local_metadata.get("version", None)`. .. note:: :attr:`state_dict` is not the same object as the input :attr:`state_dict` to :meth:`~torch.nn.Module.load_state_dict`. So it can be modified. Args: state_dict (dict): a dict containing parameters and persistent buffers. prefix (str): the prefix for parameters and buffers used in this module local_metadata (dict): a dict containing the metadata for this module. See strict (bool): whether to strictly enforce that the keys in :attr:`state_dict` with :attr:`prefix` match the names of parameters and buffers in this module missing_keys (list of str): if ``strict=True``, add missing keys to this list unexpected_keys (list of str): if ``strict=True``, add unexpected keys to this list error_msgs (list of str): error messages should be added to this list, and will be reported together in :meth:`~torch.nn.Module.load_state_dict` """ for hook in self._load_state_dict_pre_hooks.values(): hook(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) persistent_buffers = {k: v for k, v in self.named_buffers() if k not in self._non_persistent_buffers_set} local_name_params = itertools.chain(self.named_parameters(), persistent_buffers.items()) local_state = {k: v for k, v in local_name_params if v is not None} def load(param_name, dest_tensor, copy_func): state_key = prefix + param_name if state_key in state_dict: input_param = state_dict[state_key] # Backward compatibility: loading 1-dim tensor from 0.3.* to version 0.4+ if len(dest_tensor.shape) == 0 and len(input_param.shape) == 1: input_param = input_param[0] if input_param.shape != dest_tensor.shape: # local shape should match the one in checkpoint error_msgs.append('size mismatch for {}: copying a param with shape {} from checkpoint, ' 'the shape in current model is {}.'.format(state_key, input_param.shape, dest_tensor.shape)) return try: with torch.no_grad(): copy_func(input_param) except Exception as ex: error_msgs.append('While copying the parameter named "{}", ' 'whose dimensions in the model are {} and ' 'whose dimensions in the checkpoint are {}, ' 'an exception occurred : {}.'.format(state_key, dest_tensor.size(), input_param.size(), ex.args)) elif strict: missing_keys.append(state_key) def load_fp32_parameter(chunk_slice, data): chunk_slice.copy_(data.flatten()) for name, param in self.named_parameters(): if is_ddp_ignored(param): # deal with ddp ignored parameters load(name, param, param.copy_) fp32_to_name = dict() for p, fp32_p in zip(self.fp16_params, self.fp32_params): if p is not None: name = self.param2name[p] fp32_to_name[fp32_p] = name chunk_list = self.chunk_manager.get_chunks(self.fp32_params) for chunk in chunk_list: temp_chunk = get_temp_total_chunk_on_cuda(chunk) for tensor, tensor_info in chunk.tensors_info.items(): parameter_name = fp32_to_name[tensor] parameter_slice = temp_chunk[tensor_info.offset:tensor_info.end] load(parameter_name, tensor, partial(load_fp32_parameter, parameter_slice)) if chunk.is_gathered: chunk.cuda_global_chunk.copy_(temp_chunk) elif chunk.cuda_shard is not None: chunk.cuda_shard.copy_(temp_chunk[chunk.shard_begin:chunk.shard_end]) else: chunk.cpu_shard.copy_(temp_chunk[chunk.shard_begin:chunk.shard_end]) del temp_chunk for chunk_32 in chunk_list: chunk_16 = chunk_32.paired_chunk assert chunk_16 is not None chunk_16.optim_update() for name, buf in persistent_buffers.items(): if buf is not None: load(name, buf, buf.copy_) extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX if getattr(self.__class__, "set_extra_state", torch.nn.Module.set_extra_state) is not torch.nn.Module.set_extra_state: if extra_state_key in state_dict: self.set_extra_state(state_dict[extra_state_key]) elif strict: missing_keys.append(extra_state_key) elif strict and (extra_state_key in state_dict): unexpected_keys.append(extra_state_key) if strict: for key in state_dict.keys(): if key.startswith(prefix) and key != extra_state_key: input_name = key[len(prefix):] if input_name not in local_state: unexpected_keys.append(key) def _init_chunks(self, param_order, strict_ddp_mode: bool, cpu_offload: bool, pin_memory: bool): ddp_pg = ColoProcessGroup() for p in param_order.generate(): assert isinstance(p, ColoParameter) # gather sharded parameters in the strict ddp mode if strict_ddp_mode: if not p.is_replicate(): p.set_dist_spec(ReplicaSpec()) p.set_process_group(pg=ddp_pg) # ignore the parameters with no gradient if not p.requires_grad: self.set_params_to_ignore([p]) # move ignored parameters to CUDA if is_ddp_ignored(p): p.data = p.data.to(device=get_current_device(), dtype=torch.float16) continue # create a fp32 parameter fp32_data = p.data.float() fp32_p = ColoTensor(fp32_data, spec=ColoTensorSpec(p.process_group)) # create a fp16 parameter p.data = p.data.half() # register the fp16 parameter and fp32 parameter in the chunk manager dp_world_size = p.process_group.dp_world_size() self.chunk_manager.register_tensor(tensor=p, group_type='fp16_param', config_key=dp_world_size, cpu_offload=cpu_offload, pin_memory=pin_memory) self.chunk_manager.register_tensor(tensor=fp32_p, group_type='fp32_param', config_key=dp_world_size, cpu_offload=cpu_offload, pin_memory=pin_memory) self.fp16_params.append(p) self.fp32_params.append(fp32_p) self.grads_device[p] = self.gemini_manager.default_device self.chunk_manager.close_all_groups() for p, fp32_p in zip(self.fp16_params, self.fp32_params): chunk_16 = self.chunk_manager.get_chunk(p) chunk_32 = self.chunk_manager.get_chunk(fp32_p) chunk_32.init_pair(chunk_16) # keep gathered chunks are in CUDA if chunk_16.keep_gathered: self.grads_device[p] = get_current_device() def _cast_buffers(self): for buffer in self.module.buffers(): buffer.data = buffer.cuda() if torch.is_floating_point(buffer): buffer.data = buffer.half()