from typing import Dict import torch from torch.fx import GraphModule from torch.fx.node import Node from colossalai.auto_parallel.meta_profiler import MetaInfo from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply, runtime_comm_spec_apply from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, TrainCycleItem from colossalai.tensor.comm_spec import CommSpec from colossalai.tensor.shape_consistency import ShapeConsistencyManager from colossalai.tensor.sharding_spec import ShardingSpec shape_consistency_manager = ShapeConsistencyManager() def _construct_meta_info(node: Node, origin_sharding_spec: ShardingSpec, target_sharding_spec: ShardingSpec) -> MetaInfo: # get comm_action_sequence and total_cost from shape_consistency_manager _, comm_action_sequence, total_cost = shape_consistency_manager.shape_consistency( origin_sharding_spec, target_sharding_spec) meta_info = MetaInfo() # NOTE: the cost in shape_consistency_manager.mem_cost is the count in number of numel # get mem cost for MetaInfo mem_cost = shape_consistency_manager.mem_cost(comm_action_sequence) # extract user that has _meta_data and extract element length input_node = next(n for n in node._input_nodes if hasattr(n, '_meta_data')) element_length = input_node._meta_data.element_size() mem_cost.fwd.activation *= element_length mem_cost.fwd.temp *= element_length mem_cost.bwd.activation *= element_length mem_cost.bwd.temp *= element_length mem_cost.total.activation *= element_length meta_info.memory_cost = mem_cost # get computation cost for MetaInfo meta_info.compute_cost = TrainCycleItem(total_cost['forward'] * element_length, total_cost['backward'] * element_length, total_cost['total'] * element_length) # get tensor shape for MetaInfo origin_sharding_spec: ShardingSpec target_sharding_spec: ShardingSpec input_shape = origin_sharding_spec.get_sharded_shape_per_device() output_shape = target_sharding_spec.get_sharded_shape_per_device() meta_info.fwd_in = [torch.rand(input_shape, device='meta')] meta_info.fwd_buffer = [] meta_info.fwd_out = [torch.rand(output_shape, device='meta')] return meta_info def _runtime_apply_meta_info(node: Node, origin_spec_dict, sharding_spec_dict) -> MetaInfo: """ This method is used to construct `MetaInto` for shape consistency node """ # extract node index and user node index args = node.args node_index, user_node_index = args[3], args[4] origin_sharding_spec, target_sharding_spec = origin_spec_dict[node_index], sharding_spec_dict[node_index][ user_node_index] return _construct_meta_info(node, origin_sharding_spec, target_sharding_spec) def _runtime_comm_spec_apply_meta_info(node: Node, comm_actions_dict: Dict) -> MetaInfo: # extract node_index and op_data_name node_index, op_data_name = node.args[2], node.args[3] comm_action = comm_actions_dict[node_index][op_data_name] if isinstance(comm_action.comm_spec, CommSpec): # this case is for all_reduce, there will be no memory cost meta_info = MetaInfo() meta_info.memory_cost = TrainCycleItem(MemoryCost(), MemoryCost(), MemoryCost) output_node = next(n for n in node.users if hasattr(n, '_meta_data')) element_length = output_node._meta_data.element_size() total_cost = comm_action.comm_spec.get_comm_cost() meta_info.compute_cost = TrainCycleItem(total_cost['forward'] * element_length, total_cost['backward'] * element_length, total_cost['total'] * element_length) input_shape = output_shape = comm_action.comm_spec.sharding_spec.get_sharded_shape_per_device() meta_info.fwd_in = [torch.rand(input_shape, device='meta')] meta_info.fwd_buffer = [] meta_info.fwd_out = [torch.rand(output_shape, device='meta')] else: # this case will be handled by shape consistency manager origin_sharding_spec, target_sharding_spec = comm_action.comm_spec['src_spec'], comm_action.comm_spec[ 'tgt_spec'] meta_info = _construct_meta_info(node, origin_sharding_spec, target_sharding_spec) return meta_info def comm_metainfo_pass(gm: GraphModule, sharding_spec_dict: Dict, origin_spec_dict: Dict, comm_actions_dict: Dict) -> GraphModule: """ The method manages all the metainfo of the communication node (run_time_apply, runtime_comm_spec_apply) in the graph. """ for node in gm.graph.nodes: if node.target == runtime_apply: setattr(node, 'best_metainfo', _runtime_apply_meta_info(node, origin_spec_dict, sharding_spec_dict)) elif node.target == runtime_comm_spec_apply: setattr(node, 'best_metainfo', _runtime_comm_spec_apply_meta_info(node, comm_actions_dict)) else: pass return gm