from typing import List, Tuple import torch from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem from colossalai.fx.profiler.memory_utils import activation_size from colossalai.fx.profiler.opcount import flop_mapping from ..registry import meta_register __all__ = ["avgpool_meta_info", "maxpool_meta_info"] @meta_register.register(torch.nn.AdaptiveAvgPool1d) @meta_register.register(torch.nn.AdaptiveAvgPool2d) @meta_register.register(torch.nn.AdaptiveAvgPool3d) @meta_register.register(torch.flatten) def avgpool_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: """Meta info for AdaptiveAvgPool The aten graph of AdaptiveAvgPool is graph(): %input_2 : [#users=2] = placeholder[target=placeholder](default=) %_adaptive_avg_pool2d_default : [#users=1] = call_function[target=torch.ops.aten._adaptive_avg_pool2d.default](args = (%input_2, [None, None]), kwargs = {}) %zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%_adaptive_avg_pool2d_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None}) %detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {}) %_adaptive_avg_pool2d_backward_default : [#users=1] = call_function[target=torch.ops.aten._adaptive_avg_pool2d_backward.default](args = (%zeros_like_default, %detach_default), kwargs = {}) %detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%_adaptive_avg_pool2d_backward_default,), kwargs = {}) %detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {}) Returns: Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs """ input_tensor = args[0].data output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data is_inplace = kwargs.get("inplace", False) # construct forward args for flop mapping fwd_in_args = [input_tensor] fwd_out_args = [output_tensor] # construct backward args for flop mapping bwd_in_args = [output_tensor] bwd_out_args = [input_tensor] # calculate cost # the fwd op with compute cost is _adaptive_avg_pool2d.default # the bwd op with compute cost is _adaptive_avg_pool2d_backward.default # calculate compute cost fwd_compute_cost = flop_mapping[torch.ops.aten._adaptive_avg_pool2d.default](fwd_in_args, fwd_out_args) bwd_compute_cost = flop_mapping[torch.ops.aten._adaptive_avg_pool2d_backward.default](bwd_in_args, bwd_out_args) compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost) # calculate memory cost fwd_mem_cost = MemoryCost() if is_inplace else MemoryCost(activation=activation_size(output_tensor)) bwd_mem_cost = MemoryCost() if is_inplace else MemoryCost(activation=activation_size(input_tensor)) # total cost total_mem_cost = MemoryCost(activation=fwd_mem_cost.activation + bwd_mem_cost.activation) mem_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost) # store fwd_in, fwd_buffer, fwd_out fwd_in = [] fwd_buffer = [] fwd_out = [torch.zeros_like(output_tensor, device='meta')] return compute_cost, mem_cost, fwd_in, fwd_buffer, fwd_out @meta_register.register(torch.nn.MaxPool1d) @meta_register.register(torch.nn.MaxPool2d) @meta_register.register(torch.nn.MaxPool3d) def maxpool_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: """Meta info for MaxPool The aten graph of MaxPool is graph(): %input_2 : [#users=2] = placeholder[target=placeholder](default=) %max_pool2d_with_indices_default : [#users=2] = call_function[target=torch.ops.aten.max_pool2d_with_indices.default](args = (%input_2, [None, None], [None, None]), kwargs = {}) %zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%max_pool2d_with_indices_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None}) %detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {}) %detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%max_pool2d_with_indices_default,), kwargs = {}) %max_pool2d_with_indices_backward_default : [#users=1] = call_function[target=torch.ops.aten.max_pool2d_with_indices_backward.default](args = (%zeros_like_default, %detach_default, [None, None], [None, None], [None, None], [None, None], None, %detach_default_1), kwargs = {}) %detach_default_2 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%max_pool2d_with_indices_backward_default,), kwargs = {}) %detach_default_3 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_2,), kwargs = {}) Returns: Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs """ input_tensor = next(filter(lambda x: x.type == OperationDataType.ARG, args)).data output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data # construct forward args for flop mapping fwd_in_args = [input_tensor] fwd_out_args = [output_tensor] # construct backward args for flop mapping bwd_in_args = [output_tensor] bwd_out_args = [input_tensor] # construct index matrix index_matrix = torch.zeros_like(output_tensor, device="meta", dtype=torch.int64) # calculate cost # the fwd op with compute cost is max_pool2d_with_indices.default # the bwd op with compute cost is max_pool2d_with_indices_backward.default # calculate compute cost fwd_compute_cost = flop_mapping[torch.ops.aten.max_pool2d_with_indices.default](fwd_in_args, fwd_out_args) bwd_compute_cost = flop_mapping[torch.ops.aten.max_pool2d_with_indices_backward.default](bwd_in_args, bwd_out_args) compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost) # calculate memory cost # NOTE: the index matrix will be discarded in backward phase # NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward fwd_mem_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor, index_matrix])) # temp memory for backward is the index matrix to be discarded bwd_mem_cost = MemoryCost(activation=activation_size(input_tensor) - activation_size(index_matrix), temp=activation_size(index_matrix)) # total cost total_mem_cost = MemoryCost(activation=fwd_mem_cost.activation + bwd_mem_cost.activation, temp=bwd_mem_cost.temp) mem_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost) # store fwd_in, fwd_buffer, fwd_out fwd_in = [torch.zeros_like(input_tensor, device='meta')] fwd_buffer = [torch.zeros_like(index_matrix, device='meta')] fwd_out = [torch.zeros_like(output_tensor, device='meta')] return compute_cost, mem_cost, fwd_in, fwd_buffer, fwd_out