from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER from colossalai.utils.memory_utils.utils import colo_model_data_tensor_move, colo_model_data_tensor_move_inline from colossalai.utils import free_port from colossalai.zero.sharded_param import ShardedTensor import colossalai import torch import torch.multiprocessing as mp def run_tensor_move(rank): colossalai.launch(config={}, rank=0, world_size=1, host='localhost', port=free_port(), backend='nccl') assert (GLOBAL_MODEL_DATA_TRACER.cuda_usage == 0) GLOBAL_MODEL_DATA_TRACER.start() src_t = torch.ones(2, 3).cuda() GLOBAL_MODEL_DATA_TRACER.add_tensor(src_t) assert (GLOBAL_MODEL_DATA_TRACER.cuda_usage == 24) tgt_t = torch.zeros(2, 3) colo_model_data_tensor_move(src_t, tgt_t) assert (GLOBAL_MODEL_DATA_TRACER.cuda_usage == 0) assert (torch.sum(tgt_t) == 6.0), f"{torch.sum(tgt_t.payload)} vs. 6.0" src_t = torch.ones(2, 3) tgt_t = torch.zeros(2, 3).cuda().half() colo_model_data_tensor_move(src_t, tgt_t) assert (GLOBAL_MODEL_DATA_TRACER.cuda_usage == 12), f"cuda usage {GLOBAL_MODEL_DATA_TRACER.cuda_usage}" # the src_t has been removed assert (src_t.numel() == 0) assert (torch.sum(tgt_t) == 6.0), f"{torch.sum(tgt_t.payload)} vs. 6.0" src_t = ShardedTensor(torch.ones(2, 3)) tgt_t = ShardedTensor(torch.zeros(2, 3).cuda().half()) colo_model_data_tensor_move(src_t, tgt_t) assert (GLOBAL_MODEL_DATA_TRACER.cuda_usage == 24), f"cuda usage {GLOBAL_MODEL_DATA_TRACER.cuda_usage}" assert (torch.sum(tgt_t.payload) == 6.0), f"{torch.sum(tgt_t.payload)} vs. 6.0" assert (tgt_t.device.type == 'cuda') colo_model_data_tensor_move_inline(tgt_t, torch.device('cpu')) assert (tgt_t.device.type == 'cpu') assert (GLOBAL_MODEL_DATA_TRACER.cuda_usage == 12), f"cuda usage {GLOBAL_MODEL_DATA_TRACER.cuda_usage}" GLOBAL_MODEL_DATA_TRACER.close() def test_tensor_move(): mp.spawn(run_tensor_move, nprocs=1) if __name__ == '__main__': test_tensor_move()