from functools import partial import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from colossalai.communication.p2p import send_forward, recv_forward, send_backward, recv_backward, send_forward_recv_backward, send_backward_recv_forward from colossalai.context import ParallelMode from colossalai.core import global_context as gpc from colossalai.initialize import launch from colossalai.utils import free_port, get_current_device from colossalai.testing import rerun_if_address_is_in_use CONFIG = dict(parallel=dict(pipeline=2)) torch.manual_seed(123) LIST_LENGTH = 3 TENSOR_SIZE = torch.Size((3, 3)) TENSOR_SIZE_LIST = [TENSOR_SIZE for i in range(LIST_LENGTH)] data = torch.rand(3, 3) data_list = [torch.rand(3, 3) for i in range(LIST_LENGTH)] grad = torch.rand(3, 3) grad_list = [torch.rand(3, 3) for i in range(LIST_LENGTH)] def check_send_recv_forward(): if gpc.get_local_rank(ParallelMode.PIPELINE) == 0: device = torch.device('cuda:0') data_to_send = data.to(device) data_list_to_send = [] for data_in_list in data_list: data_list_to_send.append(data_in_list.to(device)) send_forward(data_to_send) send_forward(data_list_to_send) else: device = torch.device('cuda:1') data_recv = recv_forward(TENSOR_SIZE) data_list_recv = recv_forward(TENSOR_SIZE_LIST) data_to_check = data.to(device) assert data_recv.equal(data_to_check) for data_recv, data_send in zip(data_list_recv, data_list): data_to_check = data_send.to(device) assert data_recv.equal(data_to_check) def check_send_recv_backward(): if gpc.get_local_rank(ParallelMode.PIPELINE) == 0: device = torch.device('cuda:0') grad_recv = recv_backward(TENSOR_SIZE) grad_list_recv = recv_backward(TENSOR_SIZE_LIST) grad_to_check = grad.to(device) assert grad_recv.equal(grad_to_check) for grad_recv, grad_send in zip(grad_list_recv, grad_list): grad_to_check = grad_send.to(device) assert grad_recv.equal(grad_to_check) else: device = torch.device('cuda:1') grad_to_send = grad.to(device) grad_list_to_send = [] for grad_in_list in grad_list: grad_list_to_send.append(grad_in_list.to(device)) send_backward(grad_to_send) send_backward(grad_list_to_send) def check_send_recv_forward_backward(): if gpc.get_local_rank(ParallelMode.PIPELINE) == 0: device = torch.device('cuda:0') data_list_to_send = [] for data_in_list in data_list: data_list_to_send.append(data_in_list.to(device)) grad_list_recv = send_forward_recv_backward(data_list_to_send, TENSOR_SIZE_LIST) for grad_recv, grad_send in zip(grad_list_recv, grad_list): grad_to_check = grad_send.to(device) assert grad_recv.equal(grad_to_check) else: device = torch.device('cuda:1') grad_list_to_send = [] for grad_in_list in grad_list: grad_list_to_send.append(grad_in_list.to(device)) data_list_recv = send_backward_recv_forward(grad_list_to_send, TENSOR_SIZE_LIST) for data_recv, data_send in zip(data_list_recv, data_list): data_to_check = data_send.to(device) assert data_recv.equal(data_to_check) def check_layer(rank, world_size, port): launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') check_send_recv_forward() check_send_recv_backward() check_send_recv_forward_backward() gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist @rerun_if_address_is_in_use() def test_object_list_p2p(): world_size = 2 run_func = partial(check_layer, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_object_list_p2p()