""" Script for Chinese retrieval based conversation system backed by ChatGLM """ import argparse import os from colossalqa.chain.retrieval_qa.base import RetrievalQA from colossalqa.data_loader.document_loader import DocumentLoader from colossalqa.local.llm import ColossalAPI, ColossalLLM from colossalqa.memory import ConversationBufferWithSummary from colossalqa.prompt.prompt import ( PROMPT_DISAMBIGUATE_ZH, PROMPT_RETRIEVAL_QA_ZH, SUMMARY_PROMPT_ZH, ZH_RETRIEVAL_QA_REJECTION_ANSWER, ZH_RETRIEVAL_QA_TRIGGER_KEYWORDS, ) from colossalqa.retriever import CustomRetriever from colossalqa.text_splitter import ChineseTextSplitter from langchain import LLMChain from langchain.embeddings import HuggingFaceEmbeddings if __name__ == "__main__": # Parse arguments parser = argparse.ArgumentParser(description="Chinese retrieval based conversation system backed by ChatGLM2") parser.add_argument("--model_path", type=str, default=None, help="path to the model") parser.add_argument("--model_name", type=str, default=None, help="name of the model") parser.add_argument( "--sql_file_path", type=str, default=None, help="path to the a empty folder for storing sql files for indexing" ) args = parser.parse_args() if not os.path.exists(args.sql_file_path): os.makedirs(args.sql_file_path) colossal_api = ColossalAPI.get_api(args.model_name, args.model_path) llm = ColossalLLM(n=1, api=colossal_api) # Setup embedding model locally embedding = HuggingFaceEmbeddings( model_name="moka-ai/m3e-base", model_kwargs={"device": "cpu"}, encode_kwargs={"normalize_embeddings": False} ) # Define the retriever information_retriever = CustomRetriever(k=3, sql_file_path=args.sql_file_path, verbose=True) # Define memory with summarization ability memory = ConversationBufferWithSummary( llm=llm, prompt=SUMMARY_PROMPT_ZH, human_prefix="用户", ai_prefix="Assistant", max_tokens=2000, llm_kwargs={"max_new_tokens": 50, "temperature": 0.6, "do_sample": True}, ) # Define the chain to preprocess the input # Disambiguate the input. e.g. "What is the capital of that country?" -> "What is the capital of France?" llm_chain_disambiguate = LLMChain( llm=llm, prompt=PROMPT_DISAMBIGUATE_ZH, llm_kwargs={"max_new_tokens": 30, "temperature": 0.6, "do_sample": True} ) def disambiguity(input: str): out = llm_chain_disambiguate.run(input=input, chat_history=memory.buffer, stop=["\n"]) return out.split("\n")[0] # Load data to vector store print("Select files for constructing retriever") documents = [] while True: file = input("Enter a file path or press Enter directory without input to exit:").strip() if file == "": break data_name = input("Enter a short description of the data:") retriever_data = DocumentLoader([[file, data_name.replace(" ", "_")]]).all_data # Split text_splitter = ChineseTextSplitter() splits = text_splitter.split_documents(retriever_data) documents.extend(splits) # Create retriever information_retriever.add_documents(docs=documents, cleanup="incremental", mode="by_source", embedding=embedding) # Set document retrieval chain, we need this chain to calculate prompt length memory.initiate_document_retrieval_chain(llm, PROMPT_RETRIEVAL_QA_ZH, information_retriever) # Define retrieval chain llm_chain = RetrievalQA.from_chain_type( llm=llm, verbose=False, chain_type="stuff", retriever=information_retriever, chain_type_kwargs={"prompt": PROMPT_RETRIEVAL_QA_ZH, "memory": memory}, llm_kwargs={"max_new_tokens": 150, "temperature": 0.6, "do_sample": True}, ) # Set disambiguity handler information_retriever.set_rephrase_handler(disambiguity) # Start conversation while True: user_input = input("User: ") if "END" == user_input: print("Agent: Happy to chat with you :)") break agent_response = llm_chain.run( query=user_input, stop=[""], doc_prefix="支持文档", rejection_trigger_keywords=ZH_RETRIEVAL_QA_TRIGGER_KEYWORDS, rejection_answer=ZH_RETRIEVAL_QA_REJECTION_ANSWER, ) print(f"Agent: {agent_response}")