""" Script for English retrieval based conversation system backed by LLaMa2 """ import argparse import json import os from colossalqa.chain.retrieval_qa.base import RetrievalQA from colossalqa.data_loader.document_loader import DocumentLoader from colossalqa.local.llm import ColossalAPI, ColossalLLM from colossalqa.memory import ConversationBufferWithSummary from colossalqa.prompt.prompt import ( EN_RETRIEVAL_QA_REJECTION_ANSWER, EN_RETRIEVAL_QA_TRIGGER_KEYWORDS, PROMPT_DISAMBIGUATE_EN, PROMPT_RETRIEVAL_QA_EN, ) from colossalqa.retriever import CustomRetriever from langchain import LLMChain from langchain.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter if __name__ == "__main__": # Parse arguments parser = argparse.ArgumentParser(description="English retrieval based conversation system backed by LLaMa2") parser.add_argument("--model_path", type=str, default=None, help="path to the model") parser.add_argument("--model_name", type=str, default=None, help="name of the model") parser.add_argument( "--sql_file_path", type=str, default=None, help="path to the a empty folder for storing sql files for indexing" ) args = parser.parse_args() if not os.path.exists(args.sql_file_path): os.makedirs(args.sql_file_path) colossal_api = ColossalAPI.get_api(args.model_name, args.model_path) llm = ColossalLLM(n=1, api=colossal_api) # Define the retriever information_retriever = CustomRetriever(k=3, sql_file_path=args.sql_file_path, verbose=True) # Setup embedding model locally embedding = HuggingFaceEmbeddings( model_name="moka-ai/m3e-base", model_kwargs={"device": "cpu"}, encode_kwargs={"normalize_embeddings": False} ) # Define memory with summarization ability memory = ConversationBufferWithSummary( llm=llm, max_tokens=2000, llm_kwargs={"max_new_tokens": 50, "temperature": 0.6, "do_sample": True} ) # Define the chain to preprocess the input # Disambiguate the input. e.g. "What is the capital of that country?" -> "What is the capital of France?" llm_chain_disambiguate = LLMChain( llm=llm, prompt=PROMPT_DISAMBIGUATE_EN, llm_kwargs={"max_new_tokens": 30, "temperature": 0.6, "do_sample": True} ) def disambiguity(input): out = llm_chain_disambiguate.run(input=input, chat_history=memory.buffer, stop=["\n"]) return out.split("\n")[0] # Load data to vector store print("Select files for constructing retriever") documents = [] # preprocess data if not os.path.exists("../data/data_sample/custom_service_preprocessed.json"): if not os.path.exists("../data/data_sample/custom_service.json"): raise ValueError( "custom_service.json not found, please download the data from HuggingFace Datasets: qgyd2021/e_commerce_customer_service" ) data = json.load(open("../data/data_sample/custom_service.json", "r", encoding="utf8")) preprocessed = [] for row in data["rows"]: preprocessed.append({"key": row["row"]["query"], "value": row["row"]["response"]}) data = {} data["data"] = preprocessed with open("../data/data_sample/custom_service_preprocessed.json", "w", encoding="utf8") as f: json.dump(data, f, ensure_ascii=False) # define metadata function which is used to format the prompt with value in metadata instead of key, # the later is langchain's default behavior def metadata_func(data_sample, additional_fields): """ metadata_func (Callable[Dict, Dict]): A function that takes in the JSON object extracted by the jq_schema and the default metadata and returns a dict of the updated metadata. To use key-value format, the metadata_func should be defined as follows: metadata = {'value': 'a string to be used to format the prompt', 'is_key_value_mapping': True} """ metadata = {} metadata["value"] = f"Question: {data_sample['key']}\nAnswer:{data_sample['value']}" metadata["is_key_value_mapping"] = True assert "value" not in additional_fields assert "is_key_value_mapping" not in additional_fields metadata.update(additional_fields) return metadata retriever_data = DocumentLoader( [["../data/data_sample/custom_service_preprocessed.json", "CustomerServiceDemo"]], content_key="key", metadata_func=metadata_func, ).all_data # Split text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=20) splits = text_splitter.split_documents(retriever_data) documents.extend(splits) # Create retriever information_retriever.add_documents(docs=documents, cleanup="incremental", mode="by_source", embedding=embedding) # Set document retrieval chain, we need this chain to calculate prompt length memory.initiate_document_retrieval_chain( llm, PROMPT_RETRIEVAL_QA_EN, information_retriever, chain_type_kwargs={ "chat_history": "", }, ) # Define retrieval chain retrieval_chain = RetrievalQA.from_chain_type( llm=llm, verbose=False, chain_type="stuff", retriever=information_retriever, chain_type_kwargs={"prompt": PROMPT_RETRIEVAL_QA_EN, "memory": memory}, llm_kwargs={"max_new_tokens": 50, "temperature": 0.75, "do_sample": True}, ) # Set disambiguity handler information_retriever.set_rephrase_handler(disambiguity) # Start conversation while True: user_input = input("User: ") if "END" == user_input: print("Agent: Happy to chat with you :)") break agent_response = retrieval_chain.run( query=user_input, stop=["Human: "], rejection_trigger_keywords=EN_RETRIEVAL_QA_TRIGGER_KEYWORDS, rejection_answer=EN_RETRIEVAL_QA_REJECTION_ANSWER, ) agent_response = agent_response.split("\n")[0] print(f"Agent: {agent_response}")