import torch from colossalai.context.parallel_mode import ParallelMode from colossalai.tensor import ColoTensor, distspec from torch.nn import functional as F from functools import partial import colossalai import pytest import torch import torch.multiprocessing as mp from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.core import global_context as gpc from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction, DistSpecManager from _utils import tensor_equal, tensor_shard_equal def init_1d_row(weight): spec = TensorSpec( distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]), ParallelAction(ComputePattern.TP1D)) with DistSpecManager.no_grad(): weight.set_spec(spec) def init_1d_col(weight): spec = TensorSpec( distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]), ParallelAction(ComputePattern.TP1D)) with DistSpecManager.no_grad(): weight.set_spec(spec) def run_with_spec(spec_init_func): model = torch.nn.Embedding(12, 32).cuda() weight = ColoTensor(torch.nn.Parameter(model.weight.detach())) spec_init_func(weight) x = torch.tensor((0, 3, 6, 9)).cuda() out = model(x) colo_out = F.embedding(x, weight) assert tensor_equal(out, colo_out) grad = torch.rand_like(out) out.backward(grad) colo_out.backward(grad) assert tensor_shard_equal(model.weight.grad, weight.grad) def run_dist(rank, world_size, port): config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_with_spec(init_1d_row) run_with_spec(init_1d_col) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_embedding_1d(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_embedding_1d(4)