# This code is adapted from huggingface transformers: https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/llama/modeling_llama.py import math from typing import List, Optional, Tuple import torch import torch.nn as nn from transformers.modeling_attn_mask_utils import AttentionMaskConverter from transformers.models.llama.modeling_llama import ( LlamaAttention, LlamaDecoderLayer, LlamaForCausalLM, LlamaModel, repeat_kv, ) from colossalai.inference.modeling.layers.attention import convert_kvcache, copy_to_cache from colossalai.inference.struct import BatchInfo from flash_attn.bert_padding import index_first_axis, pad_input # noqa def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids): # The first two dimensions of cos and sin are always 1, so we can `squeeze` them. cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def llama_causal_lm_forward( self: LlamaForCausalLM, batch: BatchInfo = None, k_caches: List[torch.Tensor] = None, v_caches: List[torch.Tensor] = None, padding_id: int = None, ): # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) hidden_states = llama_model_forward( self.model, batch=batch, k_caches=k_caches, v_caches=v_caches, padding_id=padding_id, ) logits = self.lm_head(hidden_states) return logits def llama_model_forward( self: LlamaModel, batch: BatchInfo = None, k_caches: List[torch.Tensor] = None, v_caches: List[torch.Tensor] = None, padding_id: int = None, ): input_ids = batch.get_batch_inputs() block_tables = batch.get_block_table_tensor() sequence_lengths = batch.get_sequence_lengths() attention_mask = batch.get_attn_mask(padding_id) if batch.is_prompts: # Here, we generate position_ids through the input tensor, which can align with the output precision of the transformer. position_ids = generate_padding_position_id(attention_mask) else: position_ids = (attention_mask.sum(dim=-1) - 1).reshape(-1, 1) hidden_states = self.embed_tokens(input_ids) for layer_id, decoder_layer in enumerate(self.layers): hidden_states = decoder_layer( hidden_states, position_ids=position_ids, block_tables=block_tables, k_cache=k_caches[layer_id], v_cache=v_caches[layer_id], is_prompts=batch.is_prompts, sequence_lengths=sequence_lengths, attention_mask=attention_mask, ) hidden_states = self.norm(hidden_states) return hidden_states def llama_decoder_layer_forward( self: LlamaDecoderLayer, hidden_states: torch.Tensor, position_ids: torch.LongTensor, block_tables: torch.Tensor = None, k_cache: torch.Tensor = None, v_cache: torch.Tensor = None, is_prompts: bool = True, sequence_lengths: int = None, attention_mask: torch.Tensor = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states = self.self_attn( hidden_states=hidden_states, position_ids=position_ids, block_tables=block_tables, k_cache=k_cache, v_cache=v_cache, is_prompts=is_prompts, sequence_lengths=sequence_lengths, attention_mask=attention_mask, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states # Replace transformers.models.llama.modeling_llama.LlamaAttention.forward def llama_attn_forward( self: LlamaAttention, hidden_states: torch.Tensor, position_ids: torch.LongTensor, block_tables: torch.Tensor = None, k_cache: torch.Tensor = None, v_cache: torch.Tensor = None, is_prompts: bool = True, sequence_lengths: torch.Tensor = None, attention_mask: torch.Tensor = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = sequence_lengths[0].item() cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) if is_prompts: attn_output = pad_context_forward( query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, attention_mask ) else: key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_output = pad_decoding_forward( query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, attention_mask, self.layer_idx, self.attention_dropout, self.training, ) attn_output = attn_output.view(bsz, q_len, self.num_heads, self.head_dim) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output def generate_padding_position_id(attention_mask: torch.Tensor) -> torch.Tensor: position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) return position_ids def unpading_input(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attention_mask: torch.Tensor): seqlens = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() batch_size, kv_seq_len, num_key_value_heads, head_dim = q.shape q = index_first_axis(q.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices) k = index_first_axis(k.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices) v = index_first_axis(v.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices) return (q, k, v, indices, seqlens) def pad_decoding_forward( query: torch.Tensor, # [bsz, 1, num_heads, head_size] key: torch.Tensor, value: torch.Tensor, k_cache: torch.Tensor, # [num_blocks, num_heads, head_size, block_size] v_cache: torch.Tensor, lengths: torch.Tensor, # [num_seqs]: input_lengths + output_lengths block_tables: torch.Tensor, # [num_seqs,max_blocks_per_sequence] attn_mask: torch.Tensor = None, layer_id: int = 0, attention_dropout: float = None, training: bool = False, ): bsz, query_length, num_heads, head_size = query.shape seq_len = max(lengths) copy_to_cache(key, k_cache, lengths=lengths, block_tables=block_tables, type="decoding") copy_to_cache(value, v_cache, lengths=lengths, block_tables=block_tables, type="decoding") key = convert_kvcache(k_cache, lengths, block_tables) # bsz, seqlen, value = convert_kvcache(v_cache, lengths, block_tables) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) attn_weights = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(head_size) if attn_weights.size() != (bsz, num_heads, 1, seq_len): raise ValueError(f"Got wrong attn_weights, should be in shape {(bsz,num_heads,1,seq_len)}.") if attn_mask is not None: padding_mask = AttentionMaskConverter._expand_mask(attn_mask, query.dtype, query_length) attn_mask = AttentionMaskConverter._make_causal_mask( (bsz, query_length), query.dtype, query.device, past_key_values_length=seq_len - query_length ) if padding_mask is not None: attn_mask = attn_mask.masked_fill(padding_mask.bool(), torch.finfo(query.dtype).min) attn_weights += attn_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=attention_dropout, training=training) attn_output = torch.matmul(attn_weights, value) if attn_output.size() != (bsz, num_heads, 1, head_size): raise ValueError(f"Got wrong attn_output, should be in shape {(bsz,num_heads,1,head_size)}.") attn_output = attn_output.transpose(1, 2).contiguous().reshape(bsz, 1, -1) return attn_output def pad_context_forward( q: torch.Tensor, # [batch_size, seq_len, num_heads, head_size] k: torch.Tensor, # [batch_size, seq_len, num_kv_heads, head_size] v: torch.Tensor, k_cache: torch.Tensor, # [num_blocks, num_heads, head_size, block_size] v_cache: torch.Tensor, context_lengths: torch.Tensor, # [num_seqs] block_tables: torch.Tensor, # [num_seqs,max_blocks_per_sequence] attn_mask: torch.Tensor = None, ): # Firt, do shape verification bsz, seq_len, num_heads, head_size = q.shape num_kv_heads = k.shape[-2] assert num_heads % num_kv_heads == 0, "num_kv_heads should be divisible by num_heads" num_kv_groups = num_heads // num_kv_heads block_size = k_cache.shape[-1] assert q.shape[0] == k.shape[0] == v.shape[0] == block_tables.shape[0] block_tables.shape[-1] * block_size shape = (bsz, seq_len, num_heads, head_size) input_shape = shape[:2] # Copy kv to memory(rotary embedded) copy_to_cache(k, k_cache, lengths=context_lengths, block_tables=block_tables) copy_to_cache(v, v_cache, lengths=context_lengths, block_tables=block_tables) q = q.transpose(1, 2) k = repeat_kv(k.transpose(1, 2), num_kv_groups) v = repeat_kv(v.transpose(1, 2), num_kv_groups) attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(head_size) if attn_mask is not None: padding_mask = AttentionMaskConverter._expand_mask(attn_mask, q.dtype, seq_len) attn_mask = AttentionMaskConverter._make_causal_mask( (bsz, seq_len), q.dtype, q.device, past_key_values_length=seq_len - seq_len ) if padding_mask is not None: attn_mask = attn_mask.masked_fill(padding_mask.bool(), torch.finfo(q.dtype).min) if attn_weights.size() != (bsz, num_heads, seq_len, seq_len): raise ValueError(f"Got wrong attn_weights, should be in shape {(bsz,num_heads,seq_len,seq_len)}.") if attn_mask is not None: attn_weights += attn_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype) attn_output = torch.matmul(attn_weights, v) if attn_output.size() != (bsz, num_heads, seq_len, head_size): raise ValueError(f"Got wrong attn_output, should be in shape {(bsz,num_heads,seq_len,head_size)}.") attn_output = attn_output.transpose(1, 2).contiguous().reshape(bsz, seq_len, -1) del attn_weights return attn_output